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Summary  

Th i s  is the first qua r t e r ly  r e p o r t  of the Optimization Study of high power 

s t a t i c  i n v e r t e r s  for  space  applications. 

Th i s  r e p o r t  cove r s  the t ime  f r o m  August 1,  1963 t o  October  31, 1963. 

Work on the study began August 1,  1963. 

The introduct ion 

plan. 

p r o g r a m  goals  a r e  included as  the sect ion titled !'Methodology of the NASA 

Inve r t e r  Optimization Study, The second phase of the study which is only 

par t ia l ly  complete ,  is covered  i n  sect ions on 1 1  Descr ip t ions  of Inve r t e r  Types" 

and "Hi-power 3200 c p s  Inve r t e r  Concept. 

outlines the goals  of the study and the g e n e r a l  p r o g r a m  

The r e s u l t s  of t he  first phase  of study which involves  de te rmining  spec i f ic  

4 W l d 4 '  



INTRODUCTION 

For space use,  e l ec t r i ca l  power is utilized in  the launch vehicle to provide  

guidance and control  power s o  that the r equ i r ed  velocity and direct ional  

accuracy can be obtained. 

required for  attitude control,  navigation, guidance, communication and life 

support. 

d i rect  cur ren t .  

the DC power into f o r m s  which a r e  acceptable for  the final loads. 

utilization of these solid s ta te  devices  for space applications r e q u i r e s  detailed 

considerations of the application. 

mance r equ i r emen t s  of the load, the regulation of the DC source ,  the method 

of inversion, the environment  with i t s  t h e r m a l  considerat ions,  weight r e s t r i c -  

In satel l i te  applications e l ec t r i c  power m a y  be 

Genera l ly  this  e l ec t r i c  power is der ived f r o m  s ta t ic  s o u r c e s  of 

Static i nve r t e r s  and conve r t e r s  m u s t  be used to  condition 

Optimum 

These  considerat ions include the per for  - 

t ions,  and the components themselves.  

optimize an inver te r  for  space mus t  be p r i m a r i l y  concerned with t h r e e  f igures  

of merit .  

which i s  s tored  o r  genera ted  and because reduced  in te rna l  l o s ses  will  reduce  

internal t empera tu res .  

This  is  obviously impor tan t  because of the th rus t  l imitat ions of the launch 

vehicle. 

reliability of the inver te r .  

Any method which at tempts  to  

The f i r s t  is efficiency because of t he l imi t ed  amount of power 

The second f igure of m-erit is the power to weight ratio.  

The las t  but cer ta inly not l ea s t  impor tan t  f igure of m e r i t  is the 

High per formance  s ta t ic  i n v e r t e r s  and c o n v e r t e r s  uti l ize nondissipative 

switching of high power semiconductors  t o  achieve high efficiency and high 

2 



pdwer to weight ra t ios .  

imposs ib le  to c a r r y  s p a r e  u3its o r  to pe r fo rm routine maintenance,  the a spec t  

of inherent  re l iabi l i ty  m u s t  be weighed against  the Per formance  goals ,  

efficiency and weight to achieve the optimum mix. 

study to  examine  t h e s e  v a r i o m  aspec ts  of the space  power conditioning 

problem in  an  effort  to  de t e rmine  the mos t  feasible techniques to fulfill the 

p r e s e n t  and projected r equ i r emen t s  for  high power space  s t a t i c  inversion 

equipment. 

However,  for  space applications where  i t  is u s u a l l y  

It is the purpose  of this  

The  power r ange  to be examined c o v e r s  the range of 100 watts to 10 ,000  wat ts ,  

with f r equenc ie s  f r o m  400 to 3200 cps. 

possible  techniques which could conceivably be utilized, F u r t h e r m o r e ,  as 

new and improved  semiconductor  switching e lements  become available the  

possible  number  of techniques becomes  even l a rge r .  

goals  of a par t icu lar  application wil l  r e s t r i c t  the possible  choices of i n v e r -  

sion technique. 

mine  with NASA a reasonable  se t  of per formance  specifications for t h ree  o r  

m o r e  p ro jec t ed  applications. These  per formance  specs  a r e  to  be consistent 

with the re l iab le  operation of an  inver te r  which used advanced techniques to  

s u r p a s s  minimum space  r equ i r emen t s .  

Within these  r anges  t h e r e  are many 

However the pe r fo rmance  

The first phase  of the study, therefore ,  is a n  effort  to d e t e r -  

Having es tab l i shed  these  pe r fo rmance  specs ,  the second phase  of the study 

will  be d i r e c t e d  toward a selection of?,the most  feasible  approach  for each  

p ro jec t ed  application. In this  phase  the p r i m a r y  considerat ion will  be a 

3 



selection of the power s tage of the inve r t e r .  

of various techniques such as synchronous switching, high frequency pu l se  

Th i s  selection involves a study 

widthmodulation, etc.  Irrtegral with th i s  select ion of switching technique will  

be a choice of the switching e lement  such as  t r a n s i s t o r s ,  SCR's,gate controlled 

switches,  s a tu rab le  c o r e s  o r  hybrid combinations of the same. 

The third phase of the study will  be a combined analytical  and exper imenta l  

effort aimed at optimizing the components and c i r c u i t r y  f o r  e a c h  selected 

approach. 

The  fourth phase will  involve a re-evaluat ion of the selected approaches  i n  

light of the r e s u l t s  of the analytical  and expe r imen ta l  r e su l t s .  

t h i s  re-evaluation will be to make  those mcdifications n e c e s s a r y  f o r  best  

p r o g r a m  resu l t s .  

The  r e s u l t  of 

T h e  final phase of the study will consis t  of complete  analyt ical  evaluation of 

the finally selected approaches t o  de te rmine  the i r  reliabil i ty,  f i gu res  of m e r i t  

and to i l l u s t r a t e  the t radeoffs  which ex i s t  between the va r ious  per formance  

pa rame te r s .  

The r e su l t s  of the first phase of t h i s  p r o g r a m ,  the e s t a b l i s h m e n t  of the per-  

formance specifications,  a re  given in  the next sect ion,  (Methodology of the 

NASA Inverter  Optimization Study. ) 
7 
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METHODOLOGY O F  THE NASA 
INVERTER OPTIMIZATION STUDY 

INTRODUCTION - 

The purpose  of the ove ra l l  study is to  determine the bes t  configuration of solid 

s ta te  i n v e r t e r s  for  space  applications. 

and the components,  especial ly  the switching elements ,  will  be analyzed. 

However,  the va r ious  per formance  p a r a m e t e r s  of the i n v e r t e r  and t h e i r  i n t e r  - 

To achieve th i s  purpose  the c i r c u i t r y  

re la t ions with the components and the circui t ry  r e q u i r e s  that c e r t a i n  ground 

r u l e s  be established. T h e s e  ground r u l e s  will e s t ab l i sh  the method of evalc-  

ating the components and techniques s o  that the range of choice can  be n a r -  

rowed to  a handful of s e l ec t ed  approaches.  

Categorizat ion of Inve r t e r  Quantities 

T h e  quantit ies of p r i m a r y  concern  in  th i s  study a re  l i s t ed  below i n  t h r e e  

g r oup s . 

GROUP I Nominal DescriDtion of the Inverter 

a )  

b) Frequency  

c )  Number of phases  

d) DC input voltage 

F u l l  load vol t -amperes  (va) i n  a specified power f ac to r  range. 

5 



e 

GROUP I1 P e r f o r m a n c e  Specifications - 

a )  Harmonic  dis tor t ion 

b) Variat ion of DC inbut voltage around nominal 

c )  High frequency t r a n s i e n t s  on DC input 

d )  Output voltage 

e)  Output voltage regulation, s teady state and t r ans i en t  

f )  Output phase  separat ion 

g )  Output sho r t  c i r cu i t  protect ion 

h) Overload capability 

i)  Unbalanced load capability 

j )  Output frequency regulation 

GROUP I11 P a r a m e t e r s  to  be Optimized --- - 

a )  Weight 

b )  Efficiency 

c )  Reliability 

Th i s  list, while not all inclusive,  does  contain the quantit ies which are  of 

p r i m a r y  concern  to the e l e c t r i c a l  design of a n  inve r t e r .  

into three sepa ra t e  groups.  

tion with the proposed ground r u l e s  which are d i s c u s s e d  below. 

They have been spli t  

T h e s e  p a r t i c u l a r  groups  w e r e  se l ec t ed  in  conjunc- 

6 



fROUND RULES - -- 

Group I determines. the nominal requi rements  of the i n v e r t e r .  F o r  th i s  study 

i t  is proposed that t hese  c h a r a c t e r i s t i c s  be l imited to  the following r a n g e s  f o r  

t h r e e  i n v e r t e r  types:  

-- _I 

GROUP I T Y P E  A T-YPE B TYPE C 

Watt r ange  100 t o  500 a t  500 to  2000 2000 to  10 ,000  
1.0 t o .  7 lag 1.0 to  . 7 lag 
power factor  power factor  power factor  

1 .0  to  . 7  lag 

Frequency  40 0 40 0 3200 

Number of P h a s e s  3 3 3 

Range of DC Input 15 to  100 15 to 100 15 to  100 
Voltage 

The rat ionale  for  t hese  choices  a r e  l is ted below: 

I )  Splitting the , 10 Kw t o  lOKw range into t h r e e  p a r t s  allows the study 

t o  focus on the choice of best  technique fo r  e a c h  range. 

a specif ic  i nve r t e r  technique, such a s  synchronous switching fo r  

instance,  should be applicable throughout the selected range. The 

choice of components used in  any inverter  type would of cour se  be 

se l ec t ed  to match  the specific power under consideration. 

The use  of 

2 )  T h e  low end of the frequency band, 400 cps,  was  selected as  the m o s t  

appropr i a t e  frequency for  the low and mid-power r ange  i n v e r t e r s ;  

3200  cps ,  the top of the range,  was selected f o r  the high power inve r t e r .  

7 



The intermediate  frequency, 2000 cps,  would undoubtedly use  the same 

gene ra l  technique as the 3200 c p s  inve r t e r .  

3 )  The range of 15 to  100 volts was  seleclad as thep robab le  l imi t s  of DC 

voltage s o u r c e s  that  would become s t anda rd  in  the future.  

i nve r t e r  techniques will be capable of accepting a nominal (+-lOoJ, 

voltage within these  DC l imi t s  without a change in  the g e n e r a l  config- 

uration. 

specif ic  components would be d i r ec t ly  r e l a t ed  t o  the DC voltage l eve l  

under consideration. 

The  selected 

-20700) 

A s  in the c a s e  of t he  power level  r anges ,  the choice of 

Inve r t e r s  which operate  f r o m  DC s o u r c e s  of one volt and under a re  

considered to  be outside the m a i n  scope of t h i s  study. Studies indicate 

that th i s  type of i nve r t e r  is not especial ly  suited for  space  applications 

because of i t s  low power to  weight ra t io ,  

high s o u r c e s  of DC voltage (1000 V DC and higher) a r e  a l s o  outside the 

scope of th i s  study. 

th i s  type of i nve r t e r  offers  a potentially high power to  weight r a t i o  

i f  suitable switching techniques can be achieved. 

I n v e r t e r s  which ope ra t e  f r o m  

However, because of the low c u r r e n t s  involved, 

The Group I1 performance  specifications,  which will  hold equally fo r  

the t h r e e  inve r t e r  types, a r e  l is ted below. 

8 



Harmonic  Distrot ion:  Not to  exceed 570 on to ta l  d i s t o r -  
tion with any s i r g  le harmonic  not 
to exceed 270 

DC Input Voltage Variation: +l07Of -2070 

High Frequency  T r t n s i e n t s  on DC: i20070 of nominal for  10 m i c r o -  
seconds or  less 

Output Voltage : 110’208 VAC 

Output Voltage Regulation: *270 fo r  s teady s ta te ,  upper l imi t  
of t r a n s i e n t s  during load switching 
to bs + 50% of n o r m a l  envelope with 
r ecove ry  t o  s teady s t a t e  i n  2ci 
cycles 

Output P h a s e  Separation: 

Short  Circui t  : 

120 3 2 d e g r e e s  

Automatic recovery to  n o r m a l  
operation when shor t  is removed 

20070 for  5 see-onds.wiih &4% r egu-  
lation 

Up t o  1/3 the total  maximum VA 
between highest and lowest phases  

Overload: 

Unbalanced Load: 

One additional area which is difficult to  t r ea t  a s  a n  exact  specification but is  

neve r the l e s s  important  is  the effect of the source. Solid s ta te  i n v e r t e r s  use 

switching techniques to  condition the r a w  DC power. Th i s  rapid switching 

causes the  DC input c u r r e n t  to  contain AC components a t  mult iples  of the 

switching frequency. 

t u rbances  as  well  as d i s t u r b  the sou rce  itself. 

essent ia l ly  a detailed application problem, i t  is des i r ab le  t a  know approxi-  

mate ly  the time profi le  of the input current  S O  as to  a s c e r t a i n  the probabl-e 

9 
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magnitude of the problem. 

will include the DC input c u r r e n t  profile under the assumpt ion  that  the s o u r c e  

has  negligible in t e rna l  and t r a n s m i s s i o n  l ine impedance. 

F o r  each  of the t h r e e  i n v e r t e r  c l a s s e s ,  the study 

In the main  body of t h i s  study the effect of varying these  Group I1 specifications 

around the i r  nominal points will  be analyzed.. 

cause a n  undesirable change in  the GroupI I Ipa ra rne te r s ,  they wiil  be re -  

analyzed t o  show what can  be done to  maintain the best, ove ra l l  operation. 

If any of t hese  s p e c s  appear  t o  

Group 111, (weight, efficiency and re l iab i l i ty ) ,  r e p r e s e n t s  those p a r a m e t e r s  

which m u s t  be optimized fo r  any specific mission.  

purpose of the study to  se l ec t  the methods and components which will  allow 

a Group I11 p a r a m e t e r  o r  p a r a m e t e r s  to  be optimized f o r  the given inve r t e r  

types, These  Group I11 p a r a m e t e r s  a r e  usually in t e r - r e l a t ed  in such a way 

that optimizing one of them will general ly  degrade the others .  

a n  extremely lightweight i nve r t e r  might be designed by reducing the design 

margins  on wound i r o n  components. 

l o s s  in these  components. 

efficiency and push the semiconductor components c l o s e r  to  the i r  maximum 

operating t e m p e r a t u r e s  the reby  reducing reliabil i ty.  

a l s o  interact  with the Group I1 specifications. 

inverter  desc r ibed  above might a l s o  sac r i f i ce  harmonic  distortion. 

inter-relat ions between Group I1 and Group I11 as well  as the interact ions of 

the Group I11 p a r a m e t e r s  with each  other  will  be analyzed in  the l a t e r  phase 

It will  be t h e p r i m a r y  

F o r  instance,  

However,  t h i s  would r e s u l t  i n  m o r e  heat 

Th i s  additional heat l o s s  would r educe  the 

The  Group I11 p a r a m e t e r s  

F o r  instance,  the lightweight 

T h e s e  

10 



of th i s  study. 

Both efficiency and weight are  p a r a m e t e r s  that are e a s i l y  measured .  

study the efficiency of a n  i n v e r t e r  will be defined as  to ta l  A C  power output 

(as  m e a s u r e d  a t  the load t e r m i n a l s )  divided by DC power input. Total  A C  

power output would include the power supplied by any harmonics  remaining 

in  the f i l tered output. The weight will  be defined as  the weight of the elec- 

t r i c a l  components only. 

heat s inks,  outside case and other  s t ruc tu ra l  supports ,  connectors ,  etc. The  

weight of t hese  additional i t e m s  is closely related to  the type of heat sinking 

that is available and the shock and vibration levels to  be encountered. 

it is beyond the scope of t h i s  s t u d y  to  determine the packaging configuration 

and hence to ta l  weight, a reasonable  engineering e s t ima te  is that the weight 

of the e l e c t r i c a l  components will  compr ise  50% t o  70% of the to ta l  weight i n  

F o r  th i s  

It will not include the weight of such things as  

While 

a n  a e r o s p a c e  type inverter .  

The  rel iabi l i ty  of any i n v e r t e r  is obviously very important.  

number  at tached to  the concept of reliabil i ty is a quantitative expres s ion  of 

the effect of such f ac to r s  as the number of components used to p e r f o r m  a 

c e r t a i n  function; the t empera tu re ,  voltage and c u r r e n t  s t r e s s  on t h e s e  com-  

ponents;  the in t r in s i c  reliability and fai lure  modes of the componets them-  

se lves ;  and the number of redundant c i rcui ts  o r  components that  are used; and 

the r e q u i r e d  life of the mission.  

f r o m  a theo re t i ca l  analysis .  

m e a s u r e d  on breadboards  etc., before a number can  be assigned t o  the 

However,  the 

Most of the above information can  be obtained 

However, the actual  s t r e s s  levels  m u s t  be  
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actual c i r cu i t  reliability. 

especially the semiconduc to r s , a re  a function of the packaging and cooling of 

the f i n a l  unit. 

reliabil i ty s t r i c t ly  a n  academic  discussion i f  the stress levels  existing i n  the 

final package a r e  unknown. During the init ial  phases  of th i s  study the voltage 

and current  s t r e s s  levels  can  only be approximated by analysis  and judgrneii: 

based  on the behavior of similar circui ts .  

ment  together with the relat ive number of p a r t s  i n  the va r ious  c i r cu i t s  which 

will  guide the selection of the techniques to be studied intensively. 

l a t e r  phases of the study a n  absolute reliabil i ty ana lys i s  will be performed.  

Th i s  analysis w i l l  be based on voltage and c u r r e n t  stress levels  m e a s u r e d  

f r o m  available breadboards.  The t e m p e r a t u r e  of the components, especial ly  

semiconductors,  will be a s s u m e d  to r e m a i n  within a specified band. 

effect of radiation on the reliabil i ty of a n  inverter  is  beyond the scope or 

t h i s  study. However, i n  selecting the components, radiation of Van Allen Belt  

intensity will be assumed.  

Moreover  the t e m p e r a t u r e s  of the componerts ,  

These  f ac to r s  combine to  make  any d i scuss ion  of absolute 

It will  be th i s  analysis  and judg- 

In the 

,'he 

SUMMARY 
__I-_ 

The proposed ground r u l e s  categorize the va r ious  e l ec t r i ca l  quantit ies of the 

inverter  into t h r e e  groups:  1)  Nominal Descr ipt ion:  2) P e r f o r m a n c e  Specifi- 

cations and 3) Those P a r a m e t e r s  t o  be Optimized. Th i s  study will cove r  

t h r e e  nominal i n v e r t e r s  - a low power 400 c p s  type, a mid-pawer 400 cps  

type and high power 3200 c p s  type. The technique se l ec t ed  fo r  each of t hese  

12 



types will  be applicable over  a band of power and input voltage variation. 

per formance  specifications f o r  the three types will  be identical. 

be the p r i m a r y  purpose  of the study t o  select  and analyze the techniques that 

will optimize the weight, efficiency and reliability, and simultaneously m e e t  

the per formance  specifications f o r  each of the t h r e e  types,  

will  be to  study the interdependence of the specifications and the optimization 

p a r a m e t e r s  of the t h r e e  types so ;hat possible t radeoffs  can  be anaiyzed. 

The 

It will 

A second pur?ose 

F o r  t h e s e  pu rposes ,  a g e n e r a l  descr ipt ion of the operation, l imitat ions,  and 

advantages of the p re sen t ly  known inve r t e r  c i rcui ts  is given in  the next section, 

(Descr ipt ion of Inve r t e r  Types.  ) In addition, a detai led mathemat ica l  ana lys i s  

is per formed on two m a i n  types of inverter  c i r cu i t s  used with si l icon controlled 

r e c t i f i e r s  (SCR's)  namely, the bidirectional series i n v e r t e r  and the McMurray  

Bedford circuit .  

given in the g e n e r a l  descr ipt ion of these inverter  types and to  indicate the 

techniques used i n  obtaining them but a l so ,  by present ing i n  g r e a t  detai l  the 

operation of r ep resen ta t ive  circui ts ,  allow the r e a d e r  to  fully understand the 

complex sequence of operations which occur i n  SCR i n v e r t e r  c i r cu i t s .  

T h e s e  analyses  are included not only t o  ve r i fy  the r e s u l t s  

13 



DESCRIPTION O F  INVERTER TYPES 

I INTRODUCTION 

Solid s ta te  i n v e r t e r s  a re  designed a lmost  exclusively around two types of 

switching elements:  si l icon controlled r ec t i f i e r s  [SCR ' s )  and t r a n s i s t o r s .  

The difference between these ,  of cour se ,  is the l ack  of ability to  t u r n  off 

the SCR a t  the gate;  a n  ex te rna l  m e a n s  m u s t  be provided to  reduce the 

current  i n  the SCR to  zero.  

using SCR's. 

circuit ;  i n  o t h e r s  i t  is inherent fo r  s o m e  load r anges ,  while i n  s t i l l  o t h e r s  

extra components m u s t  be added t o  provide th i s  t u r n  off. Series type in-  

ve r t e r  c i r cu i t s  (which a re  used a lmost  exclusively with SCR's)  are  of the 

f i r s t  two types. 

t r ans i s to r s )  general ly  belong to  the l a s t  c lass .  

follow. 

SERIES INVERTERS 

A.  Unidirectional S e r i e s  Inve r t e r  

A simple s e r i e s  i nve r t e r  c i rcui t  with i t s  waveforms is shown i n  F i g u r e  1. 

Here,  the SCR is gated on with a pulse. The c u r r e n t  builds up through L, 

charging C. 

i t s  maximum and the voltage a c r o s s  L is zero.  

the cu r ren t  i n  the c i rcu i t ,  the voltage a c r o s s  i t  r e v e r s e s ,  charging C to  a 

value g r e a t e r  than E. 

C has been charged up to  a value considerably g r e a t e r  than 

Provis ion m u s t  be made  f o r  th i s  i n  all c i r c u i t s  

In some c i r cu i t s ,  t h i s  turn-off is a n  inherent  p a r t  of the 

Parallel i n v e r t e r s  (which a r e  used with both SCR's  and 

Examples  of t h e s e  groups 

When C is charged  up to  the value E, the c u r r e n t  i n  L is a t  

A s  L a t t empt s  to  maintain 

Thus by the t i m e  the c u r r e n t  i n  L goes to  ze ro ,  

14 



E, (2E i n  the no-load c a s e )  and the S C R  is back biased and t u r n s  off. C 

now d i scha rges  exponentially through R ,  thus being readied fo r  the next 

pulse. Th i s  c i r cu i t  ope ra t e s  only fo r  values of R above a c e r t a i n  minimum 

value,  as obtained f r o m  the following mathematical  analysis.  The follow- 

ing discussion appl ies  to  the equivalent c i r cu i t  of F i g u r e  1 as  shown i n  

F i g u r e  1-A. 

The in i t ia l  voltage on the capaci tor  is zero, and the closing of switch S 

a t  t = o cor responds  t o  the gating on of the S C R  i n  the c i r cu i t  of F i g u r e  1. 

1 

The equations governing the operat ion of th i s  c i r cu i t  are: 

Rearranging t e r m s ,  t h i s  equation f o r  v can be put into the s tandard f o r m :  

f 

The solution fo r  t h i s  i f  - (27 > 

with initial conditions 1 -c.,= O 

1 (the overdamped c a s e )  is 
LC 
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where 

It can be shown that, under these conditions that V>O fo r  all finite t and 

that d v / d t  7 0  for  all finite t. 

Therefore ,  the SCR i s  always ca r ry ing  c u r r e n t  (i,) and thus is always 

Thus i, C *+Gv > 0 for  all finite t. 
d t  

forward biased and neve r  shuts  off under these  conditions. (Holding 

cu r ren t ,  d i scussed  in  Appendix I, is neglected here .  1 

F a r [ a 2 <  1 , the solution for  v is osci l la tory,  and given by v E E - 
LC 

- 6-t - -  Gt where w - E e  2c&Lwt--GFc a c L L . w t  
2Cd 

The requis i te  condition for t u rn  off of the SCR is  that  i 

occur for - i l  = i 2  o r  -C dv /d t  vG. (The  fact  that  i m u s t  r e m a i n  z e r o  

0. This  will 3 

3 

for a finite interval  ( a s  explained in  Appendix I)  will be neglected for 

simplicity.)  The t ime  a t  which i3 - - o is the solution of the equation: 

where 
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Since the init ial  conditions fulfill t hese  conditions, t I o is  a t r i v a l  solution to  

th i s  equation. Whether o r  not another solution e x i s t s  depends on the value of 

G. F i g u r e s  1B through 1E show plots of the two s ides  of t h i s  equation for  

va r ious  values  of G. In F i g u r e  l B ,  which is a plot fo r  -F< 2 c  G <  Lp , lG& LJ 

the fact  that  t h e r e  is no solution in  th i s  region is obvious when one cons ide r s  

that  : 

1. Both c u r v e s  s t a r t  f r o m  the same point. ( T h i s  is a r e s u l t  o f t  I o 

being a solution.) 

2. The minimum slope of the exponential c u r v e  is g r e a t e r  than the max- 

i m u m  slope of the sinusoid, in the range under consideration, 

F r o m  the d i a g r a m  ( F i g u r e  1B) it is  obvious that i f  the two c u r v e s  i n t e r s e c t ,  it 

will have t o  be in  the posit ive region of the f i r s t  half s ine wave. 

t h i s  region, the maximum slope of the sinusoidal cu rve  o c c u r s  a t  t -  o and is 

However,  i n  

given by: 

- c 

dC 
The slope of the exponential is ZC 

Gz G2 f 
and has i t s  min imum at the origin where it equals . Since - >- 2C JC 3c i; 

fo r  all finite posit ive L, the proof of statement 2 is established. 

F i g u r e  1C shows the two halves of the equation fo r  C . This  is 

the value of G fo r  which / = e 
th i s ,  a solution still does not occur ,  (as  shown i n  F i g u r e  1-D), 

. For sl ightly s m a l l e r  values  of G than 
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but for  s t i l l  s m a l l e r  values ,  a solution is finally reached  ( F i g u r e  1-E).  

T h i s  is not a p rac t i ca l  solution; however, because i t  does  not tak.e into 

account the t ime  r equ i r ed  for  the SCR to  t u r n  off. F r o m  the complexity 

of even the simplified solution,which involves a t ranscendental  equation, 

it should be obvious that the solution to the r e a l i s t i c  problem is r a t h e r  

tedious. 

Still smaller values of G r e s u l t  i n  p rac t i ca l  solutions (1F) .  

the cu rves  in t e r sec t  (i. e. ig 

longer holds; thus if the curve has  two intersect ions,  the second one i a  of 

no significance (the t 

Note that once 

0) the equivalent c i r cu i t  of F i g u r e  1A no 

0 intersect ion is not counted.) 

Consideration of t hese  r e s u l t s  will indicate that the waveform drawings of 

Figure 1 are  fo r  the c a s e  of a v e r y  high r e s i s t a n c e  load: only as  G 4 . O  

( o r  R - 0 )  does the capacitor voltage approacii 2E. 

B. Unidirectional Series Inve r t e r  With Load SwitcL 

It i s  possible,  through additional components, to  disconnect R f r o m  the 

circuit  during the charging per iod of C,  thus allowing operation with any 

value of load, This  scheme,  shown in  Figtire 1G i s  v e r y  s imple,  but the 

output waveform(wt..ich j s the expor:enrial -lis,:harge 3;  a capaci tor  through 

a resistor) is dependent on load and of unidireztiolial polaritv.  
C. Bidirectional S e r i e s  Inve r t e r  

7 

Improvements on th i s  c i r cu i t  are  showil In F igu re  2. A detailed a n d m a t h e -  

matical  descr ipt ion of the operat ion of t h i s  i n v e r t e r  i s  given in Appendix I. 

In th i s  c i r cu i t  R L  carries c u r r e n t  i n  both d i r ec t ions  as  the capac i to r s  a re  
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a l t e rna te ly  charged and discharged by SCRl and SCR2. 

Appendix I, equations I-2c and 1-9, the load and gate  d r ive  pulse  f requency 

m u s t  m e e t  ce r t a in  requi rements  i n  t e r m s  of L & C in o r d e r  for  th i s  c i r cu i t  

to ope ra t e ;  no-load o r  light load operation with th i s  c i r cu i t  is not possible.  

If dr iven a t  the p r o p e r  frequency ( r e f e r  to F i g u r e  1-8 and equation I-4),  

t h i s  i n v e r t e r  provides  v e r y  nea r ly  a sine-wave output fo r  a constant load. 

A s  shown in  

111 PARALLEL INVERTERS 
A. Simple Parallel Inve r t e r  

The  bas i c  pa ra l l e l  c i r cu i t  i s  shown i n  Figure 3. H e r e  the switching 

e lements  are  shown as switches,  s ince both t r a n s i s t o r s  and SCR's a r e  

used in  th i s  circuit .  F o r  use with SCR's the components shown dotted 

m u s t  be included to  provide f o r  proper  commutation of the SCR's.  

The  t r a n s i s t o r i z e d  c i r cu i t  puts  out a square wave voltage into a r e s i s t i v e  

load; the output voltage of the SCR inverter ,  because of the resonant  effects 

of L and C is a complex function of the values of L, C, the operating 

frequency]  and the load. F o r  the graphical presentat ion of the r e s u l t s  of 

a s teady s ta te  ana lys i s  of th i s  type of inverter ,  the r e a d e r  is r e f e r r e d  to 

the l i t e r a t u r e  IIParallel Inverter  with Resistive Load, 

Inve r t e r  with Inductive Load, 1 1  referenced in  the Bibliography. 

and "Parallel 

Unfortunately, t h e s e  p a p e r s  do  not investigate the operation of the i n v e r t e r  

under unloaded o r  switched conditions. 

t h i s  i n v e r t e r  will  not ope ra t e  under no load conditions. 

It can  be shown a s  follows that  
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Consider any one half cycle of i nve r t e r  operation. The equivalent c i r cu i t  

of F i g u r e  3, under no load conditions, assuming S about to be closed is 

as shown in F igu re  3A. If we a s s u m e  that the SCR's  a r e  a l ternately gated 

on a t  a frequency W o  lower than the resonant  frequency of the cornniuta- 

ting components = ---I 7 G)b then, a t  the t i m e  of the closing of 

S, t h e r e  is no c u r r e n t  i n  the circuit .  When S i s  closed, the following 

I 
Y f L C  

differential equation appl ies  to  th i s  c i rcu i t :  

The solution, however, i s  only valid for  i = 7 0, s ince S only conducts in 

one direction. Thus,  t h i s  solution is valid only for  0 5  t i  2 T J x  

During th i s  t ime,  the capacitor voltage changes f r o m  <to  

T h u s ,  in each half cycle,  the equivalent capaci tor  (4C) voltage i n c r e a s e s  

by 2Ejor the voltage on the actual  capaci tor  Cc i n c r e a s e s  by 2 ( 2 E )  : 4E. 

Therefore,  e i ther  the output t r a n s f o r m e r  will  soon sa tu ra t e  f r o m  the 

overvoltage o r  one of the SCR's  will  conduct, i n  e i the r  c a s e  resul t ing in  a 

double f i r e  o r  latch-up condition where  both SCR's  a re  conducting s imul -  

taneously. Th i s  i s  indicated in the waveform drawing of F i g u r e  3B, where  
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the voltages a re  shown building up f r o m  the s t a r t i ng  condition of < =&. 

F o r  v e r y  light loads,  a similar situation o c c u r s  a t  s t a r t ,  except  a n  

equi l ibr ium condition may eventually be reached i f  the voltage r a t ings  of 

all the components a r e  high enough. 

mutation capacitance Cc must  be l a r g e  enough to  a b s o r b  the ref lected load 

c u r r e n t  f o r  that  p a r t  of the cycle during which the load is returning energy  

to  the inve r t e r  (i. e. the load voltage and c u r r e n t  a r e  of opposite s ign)  

without having the capaci tor  voltage r i s e  t o  a destruct ively high value. 

Th i s  is a l s o  d i scussed  in  the l i t e r a tu re  previously cited i n  "Parallel 

Inve r t e r  with Inductive Load. 

To  handle inductive loads,  the c o m -  

F o r  a n  i n v e r t e r  which m u s t  operate  over a wide r ange  of (lagging) power 

f a c t o r s ,  t h i s  can  r e s u l t  i n  a considerable e x c e s s  of commutation capacity 

a t  n o r m a l  o r  light loads,  giving r i s e  t o  a condition similar to  the no load 

case desc r ibed ,  

purpose applications where the load is of va r i ab le  magnitude and power 

factor .  

a t e  i f  the load impedance becomes too small. 

the r e a s o n s  f o r  t h i s  l imitation in the case of the McMurray  - Bedford 

c i r cu i t  is found in  Appendix 11; the s a m e  reasoning can be applied to  th i s  

configuration. Depending on the values of L, C, load, and operating fre- 

Thus,  t h i s  type of inverter  is not suited fo r  g e n e r a l  

Th i s  i n v e r t e r ,  l ike all SCR paral le l  i n v e r t e r s  a l s o  will  not o p e r -  

A detailed discussion of 

quency, a n  SCR which has  been conducting m a y  e i the r  be turned off by the 

at tempt  of the c u r r e n t  i n  it to  r e v e r s e  its direct ion,  o r  by  the action 
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of the commutating capaci tor  in pulling the anode voltage of one SCR 

negative when the other SCR is f i r s t  turned on. 
B. The McMurray - Bedford P a r a l l e l  Inve r t e r  

Improved operation of t h i s  c i rcui t  can  be r ea l i zed  by the addition of so- 

called "react ive1 '  diodes to  provide a path for  r eac t ive  c u r r e n t s  which 

fo rmer ly  went into the commutating capaci tor  ( fo r  the SCR circuit) .  Th i s  

allows operation fo r  all load power factors .  The r eac t ive  diodes a l s o  

serve to  l imit  the voltages under no-load conditions, ( the capaci tor  volt-  

age i s  held to  2E) so that  operation under no-load is now possible. The  

new circui t  is shown in  F i g u r e  4, again,  the additional p a r t s  r e q u i r e d  f o r  

an SCR inve r t e r  over  a t r a n s i s t o r  i nve r t e r  a r e  shown. 

of the operation of the SCR pa ra l l e l  i nve r t e r  with r eac t ive  diode ( the  

A detai led ana lys i s  

McMurray-Bedfor d c i r cu i t )  i s  given in Appendix 11. 

SCR inve r t e r  a t  s t a r tup  and steady s ta te  a r e  given in  F i g u r e s  10 a n d l l .  

Waveforms of the 

Cc. I S  : hosen according to  equation 11-15 to  provide the d e s i r e d  minimum 

:.---n-off-time ( e .  g. 2 0  ,L+ s e c )  for  the SCR's  under the wors t  condition of 
/ 

commutating the maximum c u r r e n t  a t  the minimum capacitor voltage. 

L i s  general ly  chosen to  r e sona te  with C 
C C 

a t  a frequency with half per iod 

approximately twice the turn-off-t ime. This  is only a guide and Lc m a y  

be va r i ed  a s  des i r ed ,  keeping in mind the following effects :  

F o r  a constant C source  voltage, and c u r r e n t  to  be c.ommutated: 
C' 

1. A s  L i s  dec reased ,  the available turn-off-t ime is dec reased ,  
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because  the commutating capacitor can be d ischarged  m o r e  rapidly. 

Refer t o  equation 11-29. 

2. A s  L is dec reased ,  the peak charging cur ren t  to  the capaci tor  is in-  

c r e a s e d  (equation 11-2) although the average value (which deterrnines  

the energy  del ivered to  the  capaci tor)  r ema ins  approximately constant;  

thus,  the r m s  value of the c u r r e n t  i s  increased,  resul t ing in  i n c r e a s e d  

i2 R l o s s e s  in the choke and output t r ans fo rmer .  

3. As L is increased ,  the circui t  is more  affected by suddenly changing 

loads. 

ed a c r o s s  L in such a direct ion as to cause the commutating capaci tor  

Cc to par t ia l ly  d i scha rge  into the load, 

cause  c i rcu i t  fa i lure  upon load switching. 

A sudden i n c r e a s e  in load cur ren ts  r e su l t s  in a voltage develop- 

If L is too l a rge  this  effect can  

Be cause  of the action of the react ive diodes in providing a path for  reac t ive  

c u r r e n t s  and limiting the capacitor voltage under light loading, t h i s  c i rcu i t  

will operate  and s t a r t  under a wide range of load magnitudes and power f ac to r s ;  

however, should the load become too heavy, result ing in excessive c u r r e n t s  

a t  t h e  t i m e  of commutation, then according to equation 11-15, the c i rcu i t  

provided turn-off  time is d e c r e a s e d  arid the inver te r  malfunctions. 

C. Gate-Controlled Switch P a r a l l e l  Inverter  

Idealized waveforms f o r  a t rans is tor ized  o r  gate controlled switch (GCS) 

pa ra l l e l  inver te r  operating with a res i s t ive  load a r e  shown in F igu re  5. 

typical GCS circui t  i s  shown in F i g u r e  1-6. 

e r e d  l a t e r .  ) 

.4 

(Inductive loading wi l l  be consid- 

These a r e  much l e s s  complex than those of the SCR 
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i nve r t e r  as shown in F i g u r e  11-10 because  of the absence of the 

commutating choke and capaci tor  f r o m  the c i r c u i t  of F i g u r e  5. 

IV VOLTAGE REGULATION 

The output voltage of all the i n v e r t e r s  mentioned previously w a s  a 

direct  function of the d. c. input voltage and could be va r i ed  by changing 

this voltage. Rather  efficient d. c. voltage r egu la to r s  a re  now available;  

these could be interposed between the sou rce  and the i n v e r t e r  ana  ccn-  

trolled b y  the difference between the a. C. output and a r e fe rence  to p r o -  

vide closed loop control  of i nve r t e r  output voltage. 

A. S e r i e s  Proport ional  D. C. Regulator 

The simplest  type of d. c. regulator  (and the l ightest ,  i f  heat sink r e q u i r e -  

ments a r e  not considered)  is the series regulator ,  shown schematical ly  

in f igure 5A and equivalently in  F igu re  5B. 

For a load c u r r e n t  I, the power input t o  the regulator  (neglecting the power 

required by the low l eve l  control and sensing c i r cu i t s )  is VI, and the power 
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output of the regula tor  is V I. Thus,  the max imum efficiency is 
0 

- - -- 2 = - P o  - VOI = V o Thus, f o r  g rea t e s t  efficiency, the output 

VI V Pi 

voltage should be as c lose  as  possible  to the input. However,  the regc la ted  

output can  never  be g r e a t e r  than the least  value of the input; therefore ,  for  

any but small var ia t ions  in  voltage, this  regulator  becomes  r a t h e r  

inefficient. 

diss ipated in the series control  e lement  which m u s t  then be adequately 

heat  - sinked. 

B. S e r i e s  Switching D. C. Regulator 

One of the f i r s t  switching type d. c. regulator c i r cu i t s  used the s a m e  series 

t r ans i s to r  as the s imple  series regulator,  but tu rned  it full  on o r  full  off 

F u r t h e r m o r e ,  the power lost in  the regula tor  (V-Vo) I,is all 7 

depending on how the output voltage compared with a re ference .  A 

s imple  LC filter smoothed out the l a rge  voltage var ia t ions  caused  by this  

switching, and a flyback diode was  added to provide a path for  the choke 

cu r ren t  during the per iods  when the se r i e s  switch was  off. The  resul t ing 

c i rcu i t  is shown i n  F igu re  5C, and the waveforms in  such a c i rcu i t  i n  

F igu re  5D. The l o s s e s  in  this  c i rcu i t  a r e  less than those of F igu re  5A, 

for  m o s t  cases and c a n  be analyzed as  follows: 

Assuming a switching per iod of 7 a n d  a choke l a r g e  enough s o  the cu r ren t  

is approximately constant,  the "ont1 t ime t is approximately re la ted  to  1 
t l  

the  per iod  and the input and output voltages by the  equation: $, = Tz:t, 
There fo re  f o r  a load c u r r e n t  I , the  losses  in  the c i rcu i t  will be : 

0 
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1. A21y, in the s e r i e s  choke 

in the s e r i e s  switch 

in the flyback diode 

where V i s  the forward  d rop  a c r o s s  the flyback diode, VS is the f o r -  D 

w a r d  d rop  a c r o s s  the s e r i e s  switching element  and RL is the res is-  

tance of the f i l t e r  choke. It can be seen  that t hese  l o s s e s  a r e  independent 

of the input and output voltages. 

where Vs - VD ; otherwise the l o s s e s  will  v a r y  slightly a s  the r a t i o  

of input to output voltage changes,because the t ime  r a t i o s  t l / f  and 

Th i s  is s t r i c t ly  t r u e  only fo r  the c a s e  

r-t, 
T-- will v a r y  as  th i s  r a t io  changes. Thus,  t h i s  c i r cu i t  is suitable 

in applications where the input and output voltage of the regulator  may  

differ by l a rge  amounts.  Because of the choke, i t  i s  heavier ( fo r  a given 

current)  than the c i r cu i t  of F i g u r e  5A,  but this difference can  be 

minimized by performing the switching a t  a s  high a frequency as  possible  

(consistent with t r a n s i s t o r  switching l o s s e s )  to  reduce  the choke size.  

Since th i s  i s  a switching type regulator ,  i t  is a l s o  possible  to use SCR's  

or GCS's  in place of the t r ans i s to r .  With SCR's  the c i r c u i t s  become m o r e  

complex, again because of the necessi ty  of having some method fo r  

turning the SCR off. A typical c i r cu i t  ( the Morgan Chopper) and i t s  

waveforms are  shown in  F i g u r e s  5E and 5F.  The  operat ion of t h i s  c i r cu i t  

is d i scussed  in the l i t e r a tu re ,  

Both the t r a n s i s t o r  and  SCR series type switching r egu la to r s  provide a n  

6 

output voltage which can be no g r e a t e r  than the input. 
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C. Shunt Switching D. C. Regulator (Bedford Step-up Circui t )  ? 

The newly developed Bedford circui t  shown i n  F i g u r e  5G r e m o v e s  th i s  

r e s t r i c t i o n  by providing a n  output not less  than the input voltage. 
9 

It ope r -  

a t e s  i n  the following manner ;  (refer to F igu re  5G and the waveform 

drawing 5H). When S is turned on, cu r ren t  f r o m  the s o u r c e  builds up in  

L (and S). When S is  opened, t h i s  current  flows through D into C, 

charging it. T h e  c u r r e n t  i n  L then decays (because  the output voltage is 

g r e a t e r  than input) until the switch (shown as a t r a n s i s t o r  i n  5H) t u r n s  on 

again. While the switch is closed and  cu r ren t  is  building up i n  L, the 

load c u r r e n t  is supplied ent i re ly  by capacitor C. 

and I, a m p s ,  and a n  output of V volts (Vo )Vi) and I a m p s  (Io< Ii) the 

a v e r a g e  c u r r e n t  carried by the switching element  is I - Io, and the a v e r a g e  

c u r r e n t  carried by the diode is I . 

With a n  input of V. vol ts  
1 

1 0 0 

i 

0 

Assuming a n  inductor r e s i s t a n c e  of R 

e lement  d r o p  of Vs, the l o s s e s  i n  th i s  circuit  are then 

(I;-.&)g + r, l/p * 

put voltage to  the same d e g r e e  as the losses  of the series switching 

diode d rop  of V and switching L’ D 
z ,-1 

1; f i b  $- 

Again, t h i s  is independent of the input and out- 

i nve r t e r .  

F i g u r e  5-H shows the waveforms in the Bedford c i r cu i t  for a step-up 

r a t i o  of 2 : l .  

D. I n v e r t e r  - Recti f ier  D. C. Regulators 

Other  c i r c u i t s  f o r  d. c.  regulation involve changing the d. c. to  s q u a r e  

wave a. c. with a s i m p l e  p a r a l l e l  inverter ,  and then operating on th i s  
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a. c. with var ious types of modulators  and r ec t i f i e r s .  

complex than the previous techniques desc r ibed ,  t h i s  method is of 

advantage where the r a w  d. c. input is  not n e a r  a value that can  be readi ly  

used by the load; any d e s i r e d  amount of step-up o r  s t ep  down in voltage 

can be obtained with th i s  technique by s imply varying the t u r n s - r a t i o  of 

the inve r t e r  t r a n s f o r m e r .  

w i l l  be d i scussed  in  g r e a t  detai l  l a t e r ,  and f u r t h e r m o r e  could not be 

advantageously used to  provide a m o r e  optimum d. c. voltage level  to  

dr ive a n  inve r t e r  ( s ince  i t  i tself  is a n  i n v e r t e r  and would have t o  work 

at the l e a s t  optimum voltage),  th i s  method will  not be d i scussed  fur ther .  

E. Buck Boost D. C. Regulators 

A modification of the above technique is the u s e  of a squa re  wave i n v e r t e r -  

modulator - r ec t i f i e r  to provide only the difference voltage between the r a w  

d. c. input and d e s i r e d  d. c. output. I t s  output is  then connected in s e r i e s  

with the d. c. input to  provide the regulated output, The advantage of t h i s  

Though m o r e  

Since th i s  i nco rpora t e s  i nve r t e r  s t ages ,  which 

system i s  that the inverter-modulator  is r equ i r ed  t o  p a s s  only the e r r o r  

power instead of the total  d. c. load. The output r e c t i f i e r s  s t i l l  p a s s  the 

ful l  load cu r ren t  however,  s o  the l o s s e s  h e r e  a re  not dec reased .  

c i rcui t ry  used i n  th i s  technique is shown in  F i g u r e  5-J. 

designed to sub t r ac t  f r o m  as well  as add to the r a w  d. c. input voltage; i f  

this is done, the maximum e r r o r  power r equ i r ed  is reduced by a factor  of 

The 

Th i s  c i r cu i t  can  be 

two, since the maximum output voltage of the regulator  can be halved when 

its output can  a s s u m e  ei ther  polarity.  
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F. Quasi-Square Wave Regulation Techniques 
1. Quasi-Square Wave Power Stage 

Another method for  voltage regulation involves inc reas in  th o m  1 xity 

of the basic  inve r t e r  c i r cu i t  to  provide f o r  changing the output waveform 

of the inve r t e r  as required.  

th i s  is cal led a quas i - squa re  wave and is i l l u s t r a t ed  below. 

One of the s implest  outputs resul t ing f r o m  

Harmonic  ana lys i s  of the r e su l t an t  wave (shown below) indicates  the v a r i -  

ation of the fundamental  component of this wave with the dwell angle 0. 
L 

I 
V 

I 

Hence, by changing 0, the peak amplitude of the fundamental  component of 

the above wave can  be va r i ed  between <! a n d o .  
IT 
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With t r a n s i s t o r s  and a r e s i s t i v e  load th i s  can  be eas i ly  accomplished by 

only turning them on when a n  output is des i r ed ,  instead of always having 

one on. This  is indicated in  the waveform drawings of F igu re  5. When 

using SCR ' s  the problem is m o r e  complex, s ince in  all the c i r cu i t s  f o r  

paral le l  i n v e r t e r s  d i scussed  s o  far,  the only way one SCR is  tu rned  off 

is t o  t u r n  the other  one on. Hence, i n  SCR i n v e r t e r s ,  additional c i r c u i t r y  

is r equ i r ed  to produce the output waveforms of F i g u r e  5B. 

2. Z e r o  Clamping 

Another problem which usually arises in  the quas i - squa re  wave i n v e r t e r  

is that  of providing a low impedance path fo r  any secondary c u r r e n t  flowing 

during those t i m e s  when the output voltage is zero.  

the load ( a s  seen by the power s tage)  is inductive and is  due to the effect  

of th i s  inductance in  maintaining a c u r r e n t  flow a f t e r  the driving voltage 

has been removed. The inductance m a y  be caused by a n  inductive e x t e r -  

nal load, o r  in the c a s e  of i n v e r t e r s  with filters, will be theinductance of 

the fi l ter .  

some means ,  the voltage a c r o s s  the switches will r i s e  i n  a n  a t t empt  to 

maintain the c u r r e n t  urtil the r eac t ive  diodes s t a r t  to conduct. F o r  re-  

actixe diodes connected as shown in F i g u r e  4, t h i s  o c c u r s  when the to ta l  

t r ans fo rmer  p r i m a r y  voltage is 2E. (If t h e r e  are no react ive diodes or 

other c i r cu i t  e l emen t s  t o  l imi t  the voltage, i t  will  continue t o  r ise until 

it b r e a k s  over one of the switching e l emen t s ,  perhzps  destruct ively.)  The 

result  is that the output waveform d e p a r t s  f r o m  the quas i - squa re  wave ( i n  

a fashion dependent on the magnitude and phase of cbe load) resul t ing 

Th i s  will occur  when 

. 

If a low impedance path is not provided fo r  t h i s  c u r r e n t  by 
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in i nc reased  dis tor t ion and phase shift. 

F i g u r e  5K for  a r e s i s t i v e  load with and  without a tuned fi l ter:  

An example of th i s  is shown in 

The f i r s t  column of waveforms shows the waveforms obtained with a 

pu re  r e s i s t i v e  load and no f i l t e r  between the inve r t e r  output and the load. 

The waveforms obtained a re  what one would have expected: quasi-square 

' 

waves. The  second column shows what happens when the ex te rna l  load 

is s t i l l  pu re  r e s i s t i v e  but now a resonant series turned f i l t e r  has  been 

connected between the inve r t e r  output and load. 

approximately sinusoidal but the voltage at the secondary of the output 

t r a n s f o r m e r  is no longer a quas i - squa re  wave but a m o r e  complex wave 

with lower fundamental  component and higher harmonic content than the 

one f o r  the purely r e s i s t i v e  load with no fi l ter .  Hence, any given f i l t e r  

will leave a higher harmonic content i n  the output with th i s  input than 

with the quasi-  squa re  input. 

The load c u r r e n t  becomes  

F o r  the c a s e  shown 

output waveform is dis tor ted,  the fundamental component of th i s  voltage 

s t i l l  has  the same phase relationship with the switch driving s ignals  a s  

does the output for  the purely r e s i s t i ve  load. 

ex te rna l  load be inductive,then the phase of the fundamental component 

of the output voltage will shift  due to the fact that, during the "off" ( o r  

dwell)  t i m e ,  the change in  the polar i ty  of the output o c c u r s  not a t  the mid- 

point of the dwell per iod but a t  the t ime  t h e  output c u r r e n t  c r o s s e s  through 

of the r e s i s t i ve  load with f i l t e r ,  even through the 

However, should the 
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zero. 

non- symmetr ica l ,  resul t ing i n  a phase  shift. 

Thus,  the inve r t e r  output voltage during the dwell t i m e  will  be 

The problem of providing a path fo r  t ransformed secondary c u r r e n t  when 

neither of the power switches is on can  be solved by a c i r cu i t  such as  

shown i n  F igu re  6. H e r e  S is closed whenever both S and  S are open. 

Any secondary c u r r e n t  i n  NS is then t ransformed to  the winding N 

i t  flows through S 

other voltage d rops  around the S - N loop, t he  voltage a c r o s s  N 

remains  low, thus keeping the voltage N 

Since c u r r e n t  m a y  flow through N in  e i ther  direct ion,  S , when closed,  

must be capable of ca r ry ing  a c u r r e n t  i n  e i the r  direction. 

3. P h a s e  Shifted Square Waves 

A quasi-square wave can a l so  be gene ra t ed  by adding the outputs of two 

square wave i n v e r t e r s  of var iable  phase difference,  as shown i n  F i g u r e  7. 

This  method avoids the necessi ty  of using a n  auxi l iary switch to  maintain 

low impedance during the z e r o  voltage pe r iods ,  s ince  the in t e rna l  imped-  

ance of the squa re  wave inve r t e r  is always low. However,  it does  not 

make as  full  use of the t r a n s f o r m e r  as the single s tage generat ing a 

quasi-square wave, s ince in g e n e r a l  a t  l e a s t  p a r t  of the t i m e  the outputs 

of the two s tages  will be bucking one another ,  thus requir ing a to ta l  t r a n s -  

f o r m e r  capacity g r e a t e r  than the load rating. Because,  fo r  p a r t  of each 

cycle (un le s s  the two inve r t e r  s t ages  are exact ly  i n  phase )  one i n v e r t e r  

3 1 2 

where  
sc 

with no appreciable  voltage drop. Since t h e r e  are  no 
3 

3 s c  sc  

low during the dwell  period. S 

3 s c  
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will be feeding energy  back into the other one, both i n v e r t e r s  m u s t  be 

equipped with r eac t ive  diodes. 

4. Bridge C i rcu i t s  

Be t t e r  t r a n s f o r m e r  utilization and lower switching e lement  voltages ( fo r  

a given supply voltage) can be obtained by  using the br idge c i r cu i i  ef 

F i g u r e  8. 

the same time. In th i s  fashion the t r ans fo rmer  is e i the r  connected 

a c r o s s  the d. c. supply o r  has a shor t  placed a c r o s s  i t s  p r i m a r y  to 

provide a low impedance, z e r o  voltage output condition, as d i s c u s s e d  

e a r l i e r .  With the bridge, the t r ans fo rmer  has  a s ingle  p r i m a r y  winding, 

all of which is used all the t ime ,  t o  produce e i the r  polar i ty  of output o r  to 

be sho r t ed  to produce the z e r o  voltage, zero impedance conditions. 

pending on the t i m e s  the switching elements a r e  tu rned  on, t h i s  c i r cu i t  

can  produce quas i - squa re  waves o r  square waves,  as  desired.  

of closing the switches in o r d e r  to  obtain a zero-c lamped quasi-square 

wave output is shown in  F i g u r e  8. 

a r e  c losed and opened together,  as  a r e  S and S In ei ther  c a s e  r eac t ive  

diodes,  a s  a l s o  shown on F igure  8, a r e  necessa ry .  

In th i s  c i rcu i t ,  two switching elements  are always closcC at 

D e -  

Th? o r d e r  

To produce s q u a r e  waves,  S1 and S4 

2 3' 

V HARMONIC REDUCTION 

In gene ra l ,  the harmonic  dis tor t ion of the unfil tered output of t hese  

switching c i r cu i t s  is too high f o r  many applications. 

t ions a re  t o  e i the r  filter the output to remove the ur-desired harn.2nics o r  

Two obvious solu-  
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to u s e  c i r cu i t s  which produce less harmonics .  

usually a combination of t hese  two, s ince it is not too difficult t o  con- 

s t ruct  a n  inve r t e r  that  s u p p r e s s e s  the lower harmonics  in the switching 

stages,  and the higher ones a r e  r ead i ly  attenuated by s imple f i l t e rs .  

A. 

The s imple quas i - squa re  wave, with @ =30" has no th i rd  harmonic;  t h r e e  

such waves each displaced by 120", can  be gene ra t ed  in  a s imple  3 phase 

bridge c i r cu i t  as shown i n  F i g u r e  9. Th i s  can provide a good s t a r t  fo r  a 

three phase i n v e r t e r ;  however, holding 0 a t  3 0" ( o r  any other  fixed value)  

means giving up the voltage regulation capability of the quas i - squa re  wave. 

Thus, s o m e  additional m e a n s  is  r equ i r ed  fo r  voltage regulation in  

situations where @ i s  held fixed fo r  harmonic reduction purposes .  

B. Multi-Stepped Outputs (Synchronous Switching) 

Another method for  reducing the dis tor t ion produced by the switching s t age  

i s  to u s e  a m o r e  complicated switching a r r a n g e m e n t  which is  capable of 

providing intermediate  values of Lutput. 

Figure 10. 

a r e  c losed in the proper  sequence to  provide the stepped waveform a l s o  

shown in F igu re  10. 

center tap provide the lowest output voltage,  etc. 

current  i n  a scheme such as th i s  can be a problem unless  c e r t a i n  switches 

can be made  bi-directional. 

form by adding a number of s q u a r e  waves of p r o p e r  phase relat ionship in  

The optimum design is 

Single Step Waveforms (Quasi-Square Wave) 

Such a c i r cu i t  is shown i n  

H e r e  the switches ( e i the r  t r a n s i s t o r s  o r  SCR's  may  be used)  

In th i s  scheme,  the switches f a r thes t  f r o m  the 

Pro;riding fo r  r eac t ive  

It is a l s o  possible  t o  produce such a wave- 
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t 

a technique which is a n  extension of that shown in  F i g u r e  7. 

advanced switching techniques become m o r e  advantageous in mult iphase 

i n v e r t e r s  because s e v e r a l  gating signals will  be common t o  two p h a s e s ;  

the control  sect ion f o r  a three-phase multistepped i n v e r t e r  can  be not 

appreciably m o r e  complex than that fo r  a single phase  unit. 

lat ion in  these  m o r e  complex techniques m a y  be obtained by a d. c. input 

r egu la to r ,  by varying the width of some s tep in  the waveform, o r  by 

adding together  two such waveforms with a var iable  phase difference.  

C. Constant Voltage T r a n s f o r m e r  Techniques 

A combination of voltage regulation and harmonic suppres s ion  can  be 

obtained through the use  of spec ia l  ferroresonant  t r a n s f o r m e r s  designed 

fo r  th i s  purpose  (e.g. the Sola t r ans fo rmer ) .  These ,  however,  have 

f a i r l y  high no-load l o s s e s  and a n  output voltage somewhat sensi t ive to  

load power factor. 

voltage regulation and harmonic  suppression and a l s o  provide s h o r t  

c i r cu i t  protection. 

loads,  they somet imes  d r a w  l a r g e  spikes of magnetizing c u r r e n t ;  suc -  

ces s fu l  operat ion of a n  SCR i n v e r t e r  power s tage under these  conditions 

r e q u i r e d  a l a r g e  commutat ion capacity when. compared  to  n o r m a l  demands.  

D. Static Tap  Changing 

One techniqueof voltage regulation which can be useful under c e r t a i n  con- 

T h e s e  m o r e  

Voltage r egu-  

They afford a v e r y  simple and r e l i ab le  m e a n s  of 

When s tar t ing unloaded o r  operating under switched 

dit ions is s t a t i c  tap changing. 

t h i s  u s e s  semiconductors  acting as switches SI, SL . . . . 
A s  shown in the d i a g r a m  of F i g u r e  10A,  

to  connect one of 
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several  possible  t aps  on the output t r a n s f o r m e r  to  the load. 

representat ive techniques for  utilizing S C R ' s  and t r a n s i s t o r s  i n  a. c. 

(bidirect ional)  s ta t ic  switches a r e  shown in F igu re  10B. 

selected will depend on the load and input voltage to  the t r a n s f o r m e r ,  

T h i s  technique has  the advantage that i t  al lows voltage regulation of a 

complex multi-stepped waveform without introducing dis tor t ion o r  phase 

shift a s  would be the c a s e  with a conventional on-off output modulator.  

This would be especial ly  useful in a situation where the input voltage 

w a s  v e r y  low s o  that a n  additional semiconductor i n  s e r i e s  with the input 

side (as would be the c a s e  with a conventional d. c. input r egu la to r )  would 

result  in excessive l o s s e s ,  but where  the output voltage of the switching 

stage t r a n s f o r m e r  was high enough s o  that  the d rop  in the s t a t i c  tap 

changing switching e l emen t s  would r e p r e s e n t  a negligible f ract ion of the 

output power. The disadvantage is the l a r g e  number of taps ,  and hence 

semiconductors r equ i r ed  when e i the r  che d. c. input voltage t o  the power 

switching s tage v a r i e s  over  a wide r ange  (compared  to the p e r m i s s i b l e  

variation in  output) o r  the output voltage tolerance is s o  s t r ingent  that  

variations in  output due to  changes in  load r e q u i r e  a l a r g e  number of taps.  

E. High Frequency Techniques 

SCR's could a l s o  be used to  modulate a high frequency squa re  wave to  

obtain a pulse-width modulated output l ike that of F i g u r e  11. A block 

diagram of such a sys t em,  known as  a cyclo-converter ,  is shown in  

Figure 12. 

Two 

Which t ap  is 

Other  techniques f o r  low o r d e r  harmonic  reduct ion a re  the 
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var ious  types of pulse  modulation. 

component of such a c i r cu i t  is shown in F igu re  11. T h e s e  waveforms 

would be gene ra t ed  by c i r c u i t s  similar to those a l r e a d y  d i scussed  f o r  

s q u a r e  waves;  the only difference being that the c i r cu i t  is switched seve ra l  

times i n  e a c h  cycle. 

m o r e  significant, and components designed especial ly  fo r  high frequency 

use  become a necessity.  

v e r s i o n  of the quas i - squa re  wave and can be gene ra t ed  by c i r c u i t s  similar 

t o  those used f o r  the usual quasi-square waves. 

f o r m  of F i g u r e  1 3  over  that of F i g u r e  11 is a fu r the r  reduction in  the 

amount of fi l tering required.  

r easonab le  to  use a magnet ic  ampl i f i e r  operating on a high frequency 

The switched output and fundamental  

In these  c i r cu i t s ;  switching l o s s e s  become much 

F i g u r e  1 3  corresponds t o  a high frequency 

The  advantage of the wave- 

At these  high frequencies ,  i t  would a l s o  be 

s q u a r e  wave t o  gene ra t e  these  waveforms. 

The advantages of t h e s e  high frequency techniques lie in  the s i z e  and  

weight reduct ions possible  both f rom high frequency operat ion and f r o m  

the f ac t  that  the harmonics  p r e s e n t  i n  the unfil tered output are of a v e r y  

high frequency c o r q a r e d  to  the fundzmental, simplifying filtering. The 

m a i n  disadvantage is the inc reased  switching loss .  

ly a r a t h e r  limited select ion of semiconductors i n  the high-power high- 

f requency field. 

quas i - squa re  wave+ b ru te  fo rce  bandpass filter design,  which a re  

r e s t r i c t e d  t o  sine-wave outputs, pu l se  width modulation i n v e r t e r s ,  which 

can  efficiently use  iow-pass  f i l t e r s ,  a r e  capable of providing any desired 

T h e r e  is alsa p r e s e n t -  

It might  a l s o  be mentioned that  unlike i n v e r t e r s  of the 
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waveforms with highest  frequency harmonic  below the cut-off of the 

par t icular  f i l t e r  used. 

F. P a s s i v e  F i l t e r s  

F i l t e r s  used for  the outputs of the s imple r  i n v e r t e r  c i r cu i t s  gene ra l ly  

consist of a s e r i e s  e lement  (which is  general ly  series resonant  a t  the 

fundamental frequency) and a shunt path (which is capacit ive at high fre- 

quencies and may  be turned to p a r a l l e l  resonance  a t  the fundamental  

frequency). 

frequencies of g r e a t e s t  harmonic magnitude. 

w i s e  have impedance z e r o e s  a t  appropriate  harmonics .  

concept is  shown in F igu re  14. 

s e r i e s  e lement  provide a low impedance path fo r  the fundamental and a 

high impedance to harmonics .  

to p a s s  without voltage d rop  f rom the inve r t e r  switching s tage to  the load, 

while the high harmonic  impedance p reven t s  harmonic c u r r e n t s  f r o m  

flowing in the switching s tages ,  thus reducing dissipation. Similar ly ,  the 

shunt path ideally p r e s e n t s  a n  open c i r cu i t  to  the fundamental and a 

nearly sho r t  c i r cu i t  to  harmonic cu r ren t s .  

be the small amount that get  through the s e r i e s  f i l t e r  section, along with 

any d u e  to load non-linearily.) A s  mentioned previously,  pulse  width 

modulation f i l t e r s  can  be of the low p a s s  type s ince  the pulse  width modu- 

lation waveform is essent ia l ly  f ree  of the lower o r d e r  harmonics .  

The series section may a l s o  have impedance poles  at those 

The shunt sect ion m a y  l ike-  

The basic  f i l t e r  

In gene ra l ,  i t  is des i r ab le  to  have the 

Th i s  f i r s t  al lows the fundamental  c u r r e n t  

( T h e s e  harmonic c u r r e n t s  may 
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One proposed method for  harmonic  reduction in  polyphase s y s t e m s  

involves the use of a dis t r ibuted t r ans fo rmer  to couple the switching s tage 

t o  the load. Th i s  can  best  be descr ibed as  a wound ro to r  induction motor  

with locked ro to r  and having fract ional  pitch windings and skew selected t o  

el iminated specified harmonics.  

G. Active F i l t e r s  

Another method of harmonic reduction i s  the use of act ive fi l tering. 

involves using a n  e r r o r  amplif ier  to make up the difference between the 

switching s tage output and the d e s i r e d  sine wave output as provided by a 

s ine wave r e fe rence  source.  

i n  F igu re  15. 

Table 1 c o m p a r e s  the va r ious  types of SCR i n v e r t e r s  with r e s p e c t  to  

s e v e r a l  p a r a m e t e r s  such as weight, efficiency, etc.  T h e s e  r a t ings  a r e  

based  on 400 cps  i n v e r t e r s  with 570 total harmonic dis tor t ion and operating 

a t  the 1 Kw level. Th i s  table shows that, i n  gene ra l ,  fo r  fixed load o p e r a -  

tion, the s e r i e s  i nve r t e r  is supe r io r ,  but for  l a r g e  load var ia t ions,  the 

McMurray  c i r cu i t  i s  favored. 

Not yet complete stirdies comparing the McMurray i n v e r t e r  with t r a n s  - 

i s t o r i z e d  power switching s t ages  indicate that  the l o s s e s  in  a sil icon t r a n s -  

i s t o r i z e d  power s tage would be approximately equal to  those in the 

McMurray  inve r t e r ,  with the l o s s e s  of a germanium inve r t e r  about 2 1 3  

those of a sil icon unit. The weights go in the same o r d e r ,  with the 

McMurray  unit being the heaviest ,  the silicon inve r t e r  next and the 

l i g h t e u  being the germanium,  

This  

A block diagram of such a sys tem is shown 
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APPENDIX I - Analysis of the S e r i e s  Inver te r  

A s  indicated in the introduction of th i s  report ,  these  ana lyses  (Appendices I 

and 11) s e r v e  t h r e e  purposes :  

? 

1. Fami l i a r i za t ion  of the r e a d e r  with the often-glos sed-over  f iner  detai ls  

of inver te r  c i rcu i t  operation. 

Indication of the techniques used in inverter  c i rcu i t  analysis.  

Verification of r e su l t s  s ta ted but not proved in  the e a r l i e r  p a r t  of the 

repor t .  

2. 

3. 

This  appendix contains an  analysis  of the full-wave series inver te r  d i scussed  

in  the  body of the repor t .  

a s  a simple representa t ive  of an impor tan t  family of s e r i e s  inver te r  c i rcui ts .  

The c i rcu i t  selected (See F i g u r e  1-1) was  chosen  

The circui t  of F igu re  2 is shown again he re  for  convenience (F igure  1-2). 

load is shown, ilere as a n  actual  r e s i s t ance ;  in actuali ty,  it would probably be 

the input impedance of some t r a n s f o r m e r  coupled load. (The  use of a 

The 

t r a n s f o r m e r  is possible h e r e  because of the a. c. nature  of the output of this  

type of i n v e r t e r . )  

1 

To s t a r t ,  a s s u m e  that the supply voltage, E, h a s  been applied but neither 

SCR h a s  been gated on yet. 

capac i tors  C, the voltage a t  point @(wi th  respect  to  the ground p o i n m  w i l l  be 

E/2.  

vir tue of its connection to  point @through R. 

Because of the voltage dividing effect of the 

Since nei ther  SCR is on, point @ w i l l  also a s s u m e  this  potential, by 
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Now SCR 1 is gated on. 

switch S1 on F igu re  1-2. 

connected to the ground s ide of the supply. This  is a valid r ep resen ta t ion  of 

the original c i rcui t  f o r  purposes of computation of the cur ren t  in R, L, and S 

if  the assumption is made  that  the supply sou rce  E has  z e r o  in te rna l  imped-  

ance;  s ince,  on an  a. c. bas i s ,  the two capac i tors  C are effectively connected 

in paral le l  by the ( z e r o  a. c. impedance of the)  d. c. source.  

This operation can be r e p r e s e i t e d  by the closing of 

1 The capaci tor  i n  F i g u r e  1-2 h a s  a value of 2C and is 

1 

4 2  



The equation for  the c u r r e n t  i of F igu re  1-2 is given by the different ia l  equa-  
l 

t. tion: 

0 

where  t = o when SCR 1 is  gated on. 

dition of the capacitor.  

this  special  c a s e  of the first half cycle, 

This is subject to  the ini t ia l  voltage con- 

F o r  general i ty ,  a s sume  this  has  the value Vo. (In 

E/2 ,  where E is  the we have V 
0 

supply voltage. ) The voltage d rop  a c r o s s  the SCR h a s  been neglected he re ;  a 

s imple  and f a i r l y  accu ra t e  way to take t h i s  into account is to  consider  i t  as a 

fixed voltage d r o p  of about 1.2 volts. 

The  solution to  th i s  equation is then given by 

t 

0'- 
I 

f o r  A J F j  

(1-24) 

(I-&) 

rt 

43 



dL 
F o r  the f i r s t  two of these solutions, where R ? F ,  it can  be s e e n  that  i > 0 

1 

f o r  all finite t 7 0. Th i s  m e a n s  that once SCR 1 has  been gated on i t  would, 

with an ideal SCR, continue t o  s tay on because of the c u r r e n t  i 

ing in it. 

a lways flow- 
1 

In pract ice ,  the SCR would eventually t u r n  off when the c u r r e n t  i l  

dropped below the holding cu r ren t  of the SCR. (Note: T h e  holding c u r r e n t  of a n  

SCR is that  value of forward cu r ren t  below which the SCR will  r e v e r t  t o  its 

non-conducting stage. It is typically around 20 m i l l i a m p e r e s  f o r  p r e s e n t  day 

medium and high c u r r e n t  SCR's  and v a r i e s  considerably with t e m p e r a t u r e  and  

between SCR's  making operation i n  the region R - > unsuitable f o r  i n -  

v e r t e r s ,  where the long wai ts  r equ i r ed  in  such a c i r cu i t  would necess i t a t e  

impract ical ly  low duty cycles. ) 

However, the solution for  R 4 is  osci l la tory,  with a frequency of 

The  oscil latory condition m e a n s  that the SCR will definitely be turned off by 

the circuit  as  the c u r r e n t  a t t empt s  to  r e v e r s e  its direction. Start ing with a n  

init ial  voltage on the capac i to r s  of E/2,  then the c u r r e n t  of the first half 

cycle as  obtained f r o m  the previous g e n e r a l  equations becomes 
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This  c u r r e n t  flowing into the capacitor 2C of Figure 1-2 results in  a final 

t voltage of: 

0 

Evaluating th i s  for  the g e n e r a l  c a s e  where the init ial  capaci tor  voltage is V, 

r e s u l t s  in a final capacitor voltage (using the express ion  fo r  c u r r e n t  in  the 

osci l la tory c a s e )  of: 

F o r  a n  init ial  voltage of E / 2 ,  one obtains a final voltage of 

( I -  7) 

at the end of the first half cycle which indicates a back bias  on the SCR of a n  

amount E 
- e  
24 ( I -  8 )  

Thus  for  na tura l  commutation, (where  the current  in  the c i rcu i t  goes to  z e r o  

of its own a c c o r d , )  R should be l e s s  than ,@ ohms and the minimum t i m e  

between the pu l ses  applied to  the a l te rna te  SCR's  is  given by 

where  tto is the turn-off- t ime of SCR1. 

the time in te rva l  r equ i r ed  for  the  gate to regain control  of the unit a f te r  fo r -  

(Note: Turn-off- t ime is defined as 

ward  conduction has  ceased).  
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On the next half cycle,  the capac i to r s  C, now charged  up t o  a value somewhat 

g rea t e r  than E, will be discharged by SCR 2 i n  a m a n n e r  similar t o  the 

charging by SCR 1 (except  the c u r r e n t  direct ion is r e v e r s e d  and the in i t ia l  

condition different)  with the r e s u l t  that  the potential  of point A will not end up 

at i t s  t I o value. Since the c i r cu i t  o p e r a t e s  i n  a s y m m e t r i c a l  fashion, i n  the 

steady state, the capacitor will  end up being charged  by SCR 1 t o  a voltage 

ju s t  a s  much  above E as it is d i scha rged  by SCR 2 t o  a value below ground. 

Assuming that i n  the s teady s ta te  the capacitor voltage p r i o r  t o  turning on 

SCR 1 has  the value V , then, after it has  been charged by SCR 1, its voltage 

will be E - V 

-v 

ss 

. The change i n  voltage is then E - V  8 8  which equals v final 
ss 

which f r o m  equation 1-6 is: 
0 - .  

= g+ ( g - v . s ) C  2*b - l/ss P-zdS (I- 10) 

The value fo r  Vss  obtained by equating these  two expres s ions  fo r  the change 

i n  capacitor voltage is: 

E 

The "steady state" load c u r r e n t  is then 

L r  € - X t  1 -  * I  

L . =  * i  

(I- 1 1 )  

(I- 12) 
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where  T is the per iod  of the applied dr iving signal (which can  be applied 

s imultaneously t o  both SCR's  s ince  the one which conducted l a s t  will be back 

b iased  and hence not affected by a gating signal). 

The  c u r r e n t  a f t e r  SCR 2 i s  gated on a t  T is given by 

r -F 1 

where  t o is s t i l l  the t ime  of ini t ia l  application of the dr iving pulse  to SCR 1. 

alr Thus,  each  cycle  r e q u i r e s  a minimum t ime  of u) *.Lft, where  tto is the t u r n  

off t i m e  of the SCR's.  In genera l ,  the c i rcu i t  is not designed for  the turn-off 

t i m e  of each  SCR, but r a t h e r  t o  the maximum value that will occur  in  any 

SCR's  used i n  the circuit .  Th i s  value is around 20/usec fo r  se lec ted  high 

power SCR's  and can  run  as  low as  2-3/usec for se lec ted  lower power SCR's.  

(Select ion has genera l ly  been found necessa ry  due to  the  fac t  that  some  SCR's 

have turn-of f - t imes  so  high as to  r equ i r e  imyrac t ica l ly  high values  of commIr- 

tating components.) This  s e rv i ce  is available f r o m  SCR vendors .  

The load c u r r e n t  i divides equally a t  the  capaci tors ,  1 / 2  of i t  flowing in  each  

capaci tor .  

F i g u r e  1-3 ( f o r  SCR 1 on) and F igure  1-4 (for SCR 2 on). 

Th i s  r e s u l t s  i n  c u r r e n t s  throaghout the c i r cu i t  as  shown in 
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It can be seen  that c u r r e n t  is  drawn f r o m  the supply on both half cycles ,  and 

that  th i s  c u r r e n t  is equal t o  only 1/2 the load current .  Th i s  is the r e a s o n  fo r  

connecting the load capaci tor  as shown i n  F i g u r e  1-1 instead of the method 

shown i n  F i g u r e  1-5. 

posses ses  the same equivalent c i r cu i t  as  far as the load r e s i s t a n c e  is concern-  

ed, namely that of F igu re  1-2. Hence, the solution fo r  the c u r r e n t  i of 

Figure 1-5 will be the same as  that obtained previously for  F i g u r e  1-1. 

However, F igu re  1-5 will pull a c u r r e n t  pulse  i 

is gated on and will  not affect  the supply a t  all when SCR 2 is turned on; the 

discharge path (i2) does not include the d. c. supply, 

(F igu re  1-5) puts m o r e  ripple on the supply to accomplish the same job as  the 

scheme of F igu re  1-1 and hence is not as  desirable. 

Analysis of the c i r cu i t  of F i g u r e  1-5 will show that  i t  

f r o m  the supply when SCR 1 1 

Thus,  th i s  l a t t e r  scheme 

It can be observed f r o m  these  equations the effect  of the load r e s i s t a n c e  on 

whether o r  not the c i r cu i t  will  operate  ( e q  I-2a, I -2b, I-2c) and, i f  i t  does ,  

i t s  natural  resonant  frequency (eq. 1-3)  and output voltage (eq. 1-1 I ) .  This  

indicates one l a r g e  disadvantage of the series type i n v e r t e r s ;  their  dependence 

on the load. This ,  of cour se ,  would not be a problem with a fixed load s ince 

the circuit  p a r a m e t e r s  can  be selected to  allow operat ion with any p r e d e t e r -  

mined load. 

The  discussion s o  far has  been developed on the basis that SCR 2 is not gated 

on until SCR 1 has  ceased t o  conduct and h a s  been back-biased fo r  a pe r iod  at 

l ea s t  as long as its turn-off-time. The  situation when th is  condition is not 
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. 

m e t ;  (i.e. when SCR 2 i s  turned on before SCR 1 h a s  ceased  conduction) wi l l  

now be investigated. 

The  c i rcu i t  ( F i g u r e  1-1) is a s sumed  to  be operating in a s teady s ta te  mode 

where  the potential  of p o i n t B v a r i e d  f r o m  Vss to E-V,,. In the previous 

discussion,the value for  V s s  was der ived  for the c a s e  of na tura l  commutation 

(eq. 1-1 1) and it could be seen  that t h e  value w a s  a lways negative. 

discussion this  value cannot be used because the conditions under which it was 

der ived  no longer hold. 

s imple  argument .  

equal to E /2 .  

m u m  of the potential  a t  point @ mus t  be equidistant f r o m  the value E / 2 ,  and 

s ince the maximum (which r e su l t s  f r o m  SCR 1 being gated on) m u s t  be g r e a t e r  

than the minimum (Vss ,  which r e su l t s  f r o m  SCR 2 being turned on) Vss m u s t  

be l e s s  than E / 2 .  

F o r  t h i s  

However,  a l imit  on the value can  be obtained by a 

Suppose the steady s ta te  value for  V was  g r e a t e r  o r  
5 s  

Since, by the symmet ry  of the c i rcu i t  the maximum and mini -  

Refer r ing  again to F igu re  1-1 and assuming the two halves of the center  tapped 

inductor to  be perfectly coupled, then with SCR 1 on, the voltage at E ( the 

anode of SCR 2) m u s t  be equal Ve = E - 2 L a .  

i (eq. I-2c),  into th i s  equation for  Ve resu l t s  in 

& Substituting the value for 

Since Vss  < E / 2 ,  V e  I s  negative at t = 0; however, at some t ime  before 

t =, rT 
u) 

, V e  wil l  go positive. If a pulse  i s  applied to  SCR 2 before its anode 
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is positive, nothing will  occur.  

then when the anode a t t empt s  to  go posit ive,  (which will  occur  when the cen te r  

t ap  of the choke r e a c h e s  E/2)  i t  will  be held to  ground potential  by SCR 2, and  

the cu r ren t  i n  the inductor will continue t o  rise a t  a rate of E /2L a m p s / s e c .  

Th i s  will keep both SCR's  on, creat ing a fault condition. The re fo re ,  having 

the gate of SCR 2 on as  the anode of SCR 2 goes posit ive will  r e s u l t  i n  a 

c i r cu i t  malfunction. 

If the gate  is maintained i n  the on condition, 

However, let  us now a s s u m e  that SCR 2 is off until point A j u s t  exceeds a 

2otential of E / 2  f iR by a n  amount 4. 

cur ren t s  i n  the c i r cu i t  a t  this t ime (before  SCR 2 is turned on). 

a f t e r  SCR 2 is turned on,the voltages and c u r r e n t s  a re  as shown in F i g u r e  1-7. 

T h e s e  a r e  obtained f r o m  the previous values  using the facts  that:  

F i g u r e  1-6 shows the potentials and 

Immediately 

a )  

b) 

the capacitor voltage cannot change instantaneously. 

The c u r r e n t  i n  the inductor cannot change instantaneously,  although i t  

m a y  t r a n s f e r  f r o m  one winding t o  another.  

Thus,  by turning SCR 2 oa, SCR 1 has been back-biased. 

been commutated without waiting fo r  the n o r m a l  time of a half cycle a t  the 

c i r cu i t  resonant  frequency W. ( F o r  simplicity,  the fac t  that  th i s  back-bias 

m u s t  be maintained f o r  a per iod a t  l e a s t  equal  to  the turn-off t ime  of SCR 1 

has  been neglected. ) 

Hence SCR 1 has  

W e  have thus shown that  under c e r t a i n  conditions one SCR may  be tu rned  on 
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APPENDIX I1 - Analysis of the Parallel Inve r t e r  

Th i s  appendix contains a n  analysis  of the McMurray  - Bedford pa ra l l e l  i n v e r t e r  

c i r cu i t  shown i n  F igu re  11-1. A s  was done f o r  the series i n v e r t e r  i n  

Appendix I, analyt ical  expres s ions  a r e  obtained fo r  the voltages and c u r r e n t s  

i n  different p a r t s  of the circuit .  

indicated, as wel l  as the action of the react ive diodes. 

The effect of load on c i r cu i t  operation is 

Th i s  analysis  is carried out fo r  t h e  c i rcui t  of F i g u r e  of 11-1, again using SCR's  

s ince the mechanism of commutation in th i s  c i r cu i t  is different f r o m  that  of the 

series inverter .  F u r t h e r m o r e ,  since the p a r a l l e l  i n v e r t e r  has  a s q u a r e  wave 

output (unlike the nea r ly  sinusoidal output possible  with the s e r i e s  i n v e r t e r )  a 

filter is  general ly  necessa ry .  

somewhat,  the analysis  was performed fo r  the i n v e r t e r  with a fi l ter .  

Since this modifies the operat ion of the i n v e r t e r  

The  

f i l t e r  wil l  be a s s u m e d  ideal in  the sense that  i t  p r e s e n t s  a n  infinite impedance 

t o  all harmonics  of the inve r t e r  output but p a s s e s  the fundamental  without l o s s  

o r  phase  shift. The  general ized load impedance is: 

A1:l: l  ideal t r a n s f o r m e r  is assumed,  with t aps  a t  a fract ion K of each  of the 

p r i m a r y  windings as shown. Again, at t = o the capaci tor  is uncharged and 

both SCR's  off. When SCR 1 is turned on, t he  equivalent c i r cu i t  becomes  that  

of F i g u r e  11-2, which can be fu r the r  simplified to  that of F i g u r e  11-3. Th i s  

t r ans fo rma t ion  f r o m  F i g u r e  11-2 to  Figure 11-3 r e q u i r e s  the assumption that  

the t r a n s f o r m e r  of F i g u r e  11-2 is ideal and thus t r a n s f o r m s  the capaci tor  C 
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before the other has been natural ly  commutated off without causing a c i r cu i t  

malfunction. 

max imum natural  frequency with a slightly varying load; i t  s a y s  that  even 

though a load change might r e s u l t  in a somewhat lower na tu ra l  frequency than 

the i n v e r t e r  dr ive sou rce  provides ,  operat ion is still possible.  The load 

c u r r e n t  and SCR anode voltage fo r  the t h r e e  r ep resen ta t ive  relat ionships  

between the driving frequency and na tu ra l  resonant  frequency are  shown i n  

F i g u r e  1-8. 

O v e r  damped regions ( equation I-Za, I-2b) i n  th i s  mode;  th i s  was not invest i -  

gated a t  t h i s  time. 

Th i s  fac t  could be useful i n  operating a series i n v e r t e r  a t  its 

4 According to  the l i t e r a t u r e ,  it is a l s o  possible  t o  ope ra t e  in the 
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2 by the squa re  of its t u r n s  r a t i o  f r o m  the C of F igu re  11-2 to the 2 C t 4C of 

F igu re  11-3. Because the f i l ter  allows only fundamental  c u r r e n t  to flow, the 

high frequency of the init ial  charging cur ren t  i r e s u l t s  in its being effectively 

decoupled f r o m  the load during this  fir s t  switching interval .  

The equation for  the c u r r e n t  in  th i s  c i rcu i t  (F igu re  11-3 is) 
i 
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subject t o  the inti tal  conditions 

F o r  a gene ra l  solution, i t  has been a s s u m e d  that a n  in i t ia l  voltage of Vo is 

present  on the capaci tor  of F i g u r e  11-2 ( o r  a n  init ial  voltage of V0/2 on the 

capacitor of F igu re  11-3). In the specific c a s e  of the f i r s t  half cycle,  Vo will  

be set equal to  z e r o  i n  the g e n e r a l  solution. 

Th i s  has the solution 

(11-2 ) 

This  equation i s  valid only when i 2 0 (because the SCR can  be r ep resen ted  by 1 

a closed switch only in  the region where i t  is ca r ry ing  forward  c u r r e n t )  which 

holds for 

During the per iod when SCR 1 is conducting, the capaci tor  4C will be charged  

ZT +(t) (where  V c  is  the voltage a c r o s s  the actual  up by the cu r ren t  i to  a value 
OC 

capacitor C )  which is given by the equation: 

before, for the spec ia l  case of the f i r s t  half cycle,  we will  s e t  Vo =o. 

Because of the p r e s e n c e  of the r eac t ive  diodes ( D I  and D2) the voltage a c r o s s  

the capacitor cannot r ise t o  m o r e  then 2E/K,  s ince i f  i t  did, i t  would r e q u i r e  
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that  one of the diodes would be forward  biased. 

the c u r r e n t  i 

Thus,  what happens is that 

f lows into the capacitor until the capaci tor  voltage equals  2E/K; 1 

the c u r r e n t  then flows i n  the react ive diodes. Th i s  is shown on the waveform 

drawing of F i g u r e  11-10 which shows the startup and s teady s t a t e  operat ion of 

t h i s  i nve r t e r  with a r e s i s t i v e  load. 

Substituting the known value for the c u r r e n t k q  11-2)into the g e n e r a l  equation 

11-3 for  the capaci tor  voltage r e s u l t s  in a n  explicit exp res s ion  f o r  - < : 
oz t t 

(11-4) 

Equating % ( t )  with the maximum value of Vc/2, namely E / K ;  one obtains the 

equation fo r  the t ime  

2 
when the maximum voltage is r eached :  5 

Therefore  

3 = 2  
Since,  

(11-5) 
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When t r eaches  this  value, the c u r r e n t  in  the inductor  is: 

(11-8) 

The cu r ren t s  in the c i r cu i t  immedia te ly  before  the capaci tor  C r e a c h e s  its 

maximum voltage of 2 E / K  a r e  shown i n  F igu re  11-4. 

l y  af ter  a r e  shown i n  F igu re  11-5. 

SCR 1 -D1 loap by the inductor L; the c u r r e n t  i3 flows i n  o r d e r  t o  main ta in  

the  NI re lat ionship i n  the output t r ans fo rmer .  

The c u r r e n t s  immedia te -  

The cu r ren t  i is  now fo rced  around the 
2 

The voltage a c r o s s  the  f rac t ion  

of the t r a n s f o r m e r  between D1 and the ba t t e ry  is E; the re fo re  the vol tage a c r o s s  

that r e t  cC the t r a n s f o r m e r  winding between D l  and SCR 1 i s  given by 

1 
E Assuming the diodes and SCR's  have no in t e rna l  d rops ,  this  

vo. 

thus dec reases  a t  a r a t e  of amp/ sec .  (11-9) 

the only one opposing the change of c u r r e n t  i n  L, and this  c u r r e n t  

E (1-K) 

I 
The time r equ i r ed  for  the cu r ren t  t o  d ie  to  z e r o  is thus  given by = - 4  
- bk /E# % seconds  CI-10) 

E ( 1 4  

r e n t  i during th i s  i n t e rva l  is given by: I .  a m  
2 
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where  t = o is the t ime  of init ial  gating on of SCR 1. 

decay  in  5 
equation XI-8) 

(Th i s  is ju s t  a l inear  

seconds f r o m  the init ial  value of the c u r r e n t  a s  given by 

The c u r r e n t  i 3  which m u s t  flow to maintain the NI relat ionships  in  t h e  output 

t r a n s f o r m e r  is given by 

and the in tegra l  

G 

(11- 12) 

(11-13) 

r e p r e s e n t s  the excess  energy s tored  in  the inductor being r e tu rned  

to the bat tery.  

drawing of F i g u r e  II-10. 

These  c u r r e n t s  are also shown in  the waveform 

F r o m  these  equations can be seen  t h e  reasons for  having K < 1; i f  K I 1, 

(i. e. ,  t h e  diodes D 

where SCR 1 and SCR 2 respec t ive ly  a r e )  the cu r ren t  i 

c i rcu la te  in the L, SCR 1, D1 loop indefinitely. 

in t hese  e lements  would tend to damp the cur ren ts ,  but all the excess  energy  

s to red  in the inductance L would be dissipated in the c i r cu i t  e lements  ins tead  

of being r e tu rned  to the battery.) 

and D2 were  connected to t h e  ends  of t h e  t r a n s f o r m e r  
1 

would continue to 
2 

(Of course ,  the r e s i s t ance  

The s m a l l e r  K is made, the faster the energy s to red  in  the choke is r e tu rned  

to  the bat tery.  However,  a s  K is  made  smal le r ,  the  higher the voltage a c r o s s  
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the  t r ans fo rmer  must  r ise  in  o r d e r  f o r  the r eac t ive  diodes to  become effective, 

and the higher the in t e rna l  impedance of the i n v e r t e r  during r eac t ive  c u r r e n t  

periods becomes. A p rac t i ca l  min imum value fo r  K is  0. 8 .  

A t  the end of th i s  pe r iod  of re turning energy  to  the ba t t e ry  (during which the 

capacitor voltage has  been maintained a t  2E/K volts,  ) the commutating 

capacitor d i scha rges  into the load until its voltage d r o p s  t o  2E volts. 

If the load c u r r e n t  a t  th i s  time is  11, then the capaci tor  c u r r e n t  is 5 ( the 

t r ans fo rmer  has a 1 : l : l  t u r n s  r a t io )  and i t s  voltage then changes a t  a rate of 
2 

(I1 - 14) 

T h e  change in  voltage is volts;  thus the t i m e  

required is AV - -- .&F($-/) = “/cE($ - I )  4 

seconds (11-15) 

z 
When th is  d i scha rge  has  been completed, the load c u r r e n t  is again c a r r i e d  by 

SCR 1. F o r  a r e s i s t i v e  load, nothing fu r the r  happens until SCR 2 is gated on. 

When SCR 2 i s  turned on, then the cycle as  s t a r t e d  with F i g u r e  11-2 is repeated,  

only now SCR 1 m u s t  be turned off and the init ial  voltage on the capaci tor  is 

-2E. 

occurs  in  the steady state, i f  % is s e t  equal  t o  -2E. 

operation is  shown in  F igu re  11-10. 

res is t ive load with the output f requency of the i n v e r t e r  low enough s o  that  it 

can  be a s s u m e d  that the r e f l ec t ed  load c u r r e n t  is c o n s t a n t  (and z e r o )  during 

Equations 11-1 through 11-15 can  thus be used t o  d e s c r i b e  the action that  

A complete cycle  of 

Th i s  d i a g r a m  is f o r  the c a s e  of a p u r e  
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t h e  switching interval.  

The t i m e  sca le  on th i s  d i ag ram is not constant; the switching in te rva ls  are 

expanded to  show in  detai l  the waveforms a t  commutat ion while the later per iod 

of operation is shown m o r e  to  scale.  

cated and are obtained f r o m  fo rmulas  developed previously.  A t  higher 

f requencies  where  the  expanded portion of the waveform ( the switching 

in te rva l )  becomes  a n  increasing fract ion of the total  cycle,  exact  ana lys i s  

becomes  m o r e  difficult, however, for most  regions of in te res t ,  the c u r r e n t  

due to switching and the load may  be super imposed ,because  the SCR fo rward  

d rop  is substantially independent of current .  

Values of c u r r e n t  and  voltage a r e  indi-  

When load c u r r e n t  is non-zero  during the commutation per iod,  (as will occur  

for  react ive loads)  the c i rcu i t  operation becomes m o r e  involved but can  be 

analyzed as follows: Since it has  been assumed that the filter p a s s e s  only 

fundamental cur ren t ,  the load c u r r e n t  can be wri t ten 

11-16 

where  W is the fundamental (output) angular frequency of the inve r t e r  (and 

filter) a n d 8 ,  is the angle of the combined load and f i l t e r  impedance as  seen 

by the power stage. 

compared  to  the per iod of the  fundamental frequency, t h e  load c u r r e n t  during 

the commutat ion in te rva l  is approximately constant. This  value may  be any- 

where  between -A a n d f A  depending on the phase angle of the  load impedance 

as  s e e n  by the inve r t e r  output t r a n s f o r m e r .  

0 

Under the assumption that the commutat ion t ime  is sma l l  

F u r t h e r m o r e ,  with the operating 
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frequency much less than the na tu ra l  r e sonan t  f requency of L and C (which 

will  be on the o r d e r  of 20 KC), the  voltage developed a c r o s s  the inductor L 

by the changing c u r r e n t  at the fundamental f requency is negligible. 

t h e s e  assumptions the voltages and c u r r e n t s  during the commutation pe r iod  

will  be examined. 

Under 

Immediately p r i o r  t o  the turning on of SCR 2,  the voltages and c u r r e n t s  i n  the 

circuit  a r e  as shown i n  F i g u r e  11-6. ( F o r  th i s  discussion,  a n  inductive load 

has  been assumed,  so at the t ime  of commutation of SCR 1, t h e r e  is a c u r r e n t  

flowing i n  it f r o m  the load). SCR 1 (about t o  be commutated)  is ca r ry ing  i4 

L' the (1 : l )  t ransformed load c u r r e n t  i 

(11- 17) 

A t  the instant a f t e r  SCR 2 is turned on, the voltages and c u r r e n t s  are as shown 

in  Figure 11-7. 

Since the fi l ter  maintains  the load c u r r e n t  constant a t  I 

ing, the t r a n s f o r m e r ,  i n  o r d e r  t o  maintain the r e l a t i o n Z N 1  

a t  the t i m e  of switch- 
0 

0, m u s t  c a r r y  

a p r i m a r y  c u r r e n t  of Io as shown. Since the c u r r e n t  m u s t  a l s o  be maintained 

i n  the commutating choke, the c u r r e n t  path shown f o r  i 

possible. (Any c u r r e n t  i n  the now unused half of the p r i m a r y  which would be in  

is the only one 5 

the proper  direct ion t o  maintain the t r a n s f o r m e r  NI relat ionship would have 

t o  flow i n  the r e v e r s e  direct ion through SCR 2; th i s  is not allowed.) SCR 1 

will  be r e v e r s e  biased until the capaci tor  voltage r e a c h e s  zero.  If t h i s  w e r e  
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the  only c u r r e n t  flowing, the capaci tor  would r e a c h  z e r o  volts a t  

(11-18) 

However,  t h e r e  will a l s o  be a c u r r e n t  flow into the capaci tor  as SCR 2 

a t t empt s  to  charge  i t  up to  2 E  through the t ransformer .  

t ions for  this act ion are shown i n  F igu re  11-8. 

The c u r r e n t  d i r e c -  

A n  exac t  solution fo r  the  avai lable  turn-off-time (under  the assumpt ion  that 

the load c u r r e n t  does  not change during the commutation in te rva l )  can be 

obtained as  follows. F igu re  11-SA r ep resen t s  the c i r cu i t  as SCR 1 is  turned  

on. H e r e  I is the re f lec ted  load cu r ren t  (assumed constant, as shown) and i 

is the capaci tor  charging cur ren t .  

0 

Under the assumpt ion  that t he  t r a n s f o r m e r  is i dea l  and that the load c u r r e n t  

r e m a i n s  constant  during commutation, the equivalent c i r cu i t  of F i g u r e  11-9A 

becomes  as shown i n  F igure .  11-9B. 

The equat ions for t h i s  c i r cu i t  are 
,t 

Eliminating V C/ 2, t h e r e  r e s u l t s  
t 

0 
I 
I Different ia t ing this and r ea r r ang ing  t e r m s  yields: 

6 1  
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Subject t o  the initial conditions ! 
4- E-+ - 

4 
(11-22) 

T h i s  has the solution: 

The  total c u r r e n t  into the capaci tor  is then i +  21, o r  

( I1 - 24)  

The voltage on the equivalent capaci tor  4 C  will  then rise f r o m  v0/2 (where  v 

will  actually be a negative number)  through 0 towards its final value E / K .  

However, once the capaci tor  voltage p a s s e s  through the z e r o  point, the  SCR 

being commutated ( in  th i s  case SCR 1)  is again forward  biased, ending the 

0 

available turn-off-period. The charge that  m u s t  be added t o  the capaci tor  t o  

accomplish th i s  voltage change is 

(11 - 2 5) 

Equating t h e s e  two values o f d q  (and per forming  the integration) there r e s u l t s  

Combining the s ines  and cosines  t r igonometr ical ly  r e s u l t s  i n  the equation: 
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which has  the solution: 

F o r  the c a s e  of a v e r y  l a r g e  cu r ren t  t o  commutate,  t h i s  expres s ion  r educes  

to  (using the  approximations --)BYB, L-'S 2 e f o r  v e r y  

small and assuming that 5 - d E )  

-CF --e - 2- which a g r e e s  (11-30) 

r,G z,m r, 

with this  l imit ing c a s e  value obtained f r o m  other reasoning  (equation 11-18). 

The  voltage a c r o s s  the capaci tor  is then (for an init ial  voltage of -2E) ; 
& 

0 

Clear ly ,  the value of v at any t ime t will vary as I v a r i e s ,  so, as a l imit ing 
C 0 

case ,  the si tuation where  Io is v e r y  l a r g e  w i l l  be investigated. F o r  this  c a s e  

the  equation for  v 

t r i gonomet r i c  re la t ions  AB 28 4 -* e/ for  8 v e r y  small 

can  be wr i t ten  approximately (using the  s m a l l  angle  
C 

(11-32 ) 

and , the t ime at which < '= y 
I (11-33) 

is given by 3 - 
When t r e a c h e s  this value, the  load cur ren t ,  which previous ly  went into the 

I capac i tor ,  now flows into the reac t ive  diode. Because  the capaci tor  was 
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charged up so rapidly, the amount of ex t r a  c u r r e n t  built up in  the commutat ing 

inductor is neglibible. 

The current  trapped in the commutating choke ( the s u m  of the load and capaci-  

to r  charging c u r r e n t s  at the  instant  when the capacitor voltage r e a c h e s  E / K ,  

although in  this  c a s e  the capacitor charging c u r r e n t  h a s  been taken as 

negligible compared  to the load cu r ren t )  then d e c r e a s e s  at the r a t e  of 

L, 
(9) a m p s / s e c  until i t  r e a c h e s  zero.  

F o r  accurate  resu l t s ,  t h e  actual  f inal  c u r r e n t  in  the inductor should be used 

as  the s tar t ing point of this  l inear  decay. 

Figure II-9AJ it can be seen  that the c u r r e n t  in the inductor at any time t for 

which these equations a r e  valid (which is the t ime  f r o m  the s t a r t  of commuta- 

tion until t h e  react ive diodes s t a r t  to conduct ) is given by 

F r o m  equation IIt23 and 

and the l a rges t  value of t for  which this  is valid is given by the solution of 

equation 11-26 for the c a s e  where bQ = 4 c 1% - “/z] 
The reactive load c u r r e n t  continues to  flow through diode D 

resulting in a back bias  of 

however, 
1 

volts on SCR 1 through the action of the 
k 

t r ans fo rmer  windings. This  react ive c u r r e n t  is in a direct ion so as to  

charge the battery>indicating that) in  th i s  portion of the cycle,  reac t ive  ene rgy  

s tored in t h e  load during a previous cycle  is being r e tu rned  to the d. c. supply. 

Sometime before the half-cycle is half over ,  the load c u r r e n t  m u s t  r e v e r s e  its 
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di rec t ion ,  and energy  once again flows f rom the  ba t t e ry  t o  the load v i a  

c u r r e n t  through SCR 1 and the commutating choke. When the half cyc le  is 

ove r ,  SCR 2 is turned  on and the  p r o c e s s  repeats ,  but with the load c u r r e n t  

r e v e r s e d  and SCR 1 and D1 changing p laces  with SCR 2 and D2. 

on the waveform drawing of F igu re  11-11 which, like the prev ious  one fo r  a 

r e s i s t i v e  load ( F i g u r e  11-10) has  the f i r s t  portion of t he  cycle  expanded to  show 

the  commutat ion p r o c e s s  in  detail.  

This  is shown 

F r o m  previous  equations (11-18, 11-29, 11-30) it can  be s e e n  that for the  

p a r a l l e l  i nve r t e r  t he re  is a maximum load cur ren t  that  can  be commutated;  

exceeding th i s  value will r e s u l t  i n  inadequate turn-off t ime. 

F o r  this  r eason ,  the s imple  pa ra l l e l  inverter  will not opera te  with a s h o r t  

c i r cu i t  o r  under any other  condition which would r e s u l t  i n  an  excess ive  c u r r e n t  

flow a t  the t i m e  of commutation. Excessive c u r r e n t  not due to the load can  

occur  on s t a r t i ng  a pa ra l l e l  i nve r t e r  if the residual  f l u x  l eve l s  i n  the output 

t r a n s f o r m e r  a r e  not considered.  F o r  example , f igure  11- 12A shows 

(dashed  l ine)  

( so l id  l ine)  

a typical  hys t e re s i s  loop for  a toro ida l  co re ,  and 

a B-H curve  on which it would be des i r ab le  to  opera te ,  

f r o m  the point of view of making maximum use of the c o r e  mater ia l .  

because  the ini t ia l  f lux leve l  in  the t r ans fo rmer  could be anywhere between 

- B  and +B where  B is the r e s idua l  flux resul t ing f r o m  the maximum flux 

l eve l  at which the t r a n s f o r m e r  is operated,  the f i r s t  half cycle  of applied 

voltage could eas i ly  r e s u l t  i n  saturat ing the c o r e  

However,  

r r r 

Should the  resu l t ing  
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excessive magnetizing c u r r e n t  exceed  the  maximum commutat ible  load 

current ,  the  c i rcui t  would malfunction. Also, because  toroidal  t r a n s f o r m e r s  

have a ve ry  high r a t io  of B 

tend to dr i f t  towards one end of t h e  h y s t e r e s i s  loop under any slight unbalance 

to  B ~ ~ ~ ,  and because  of the i r  high permeabi l i ty  r 

in the dr ive,  even in a c o r e  designed for  operat ion at a low f lux  density i t  is 

possible to  end up at a f l u x  level  v e r y  n e a r  to the Bmax of t h e  c o r e  mater ia l .  

This  is shown in F igu re  11-12B, where  the dashed  l ine again r e p r e s e n t s  t h e  

B-H charac te r i s t ic  of the m a t e r i a l  and t h e  solid l ine the d e s i r e d  (and expected) 

hys te res i s  loop. The dotted line indicates the  loop tha t  would be obtained in 

the steady s ta te  w i tha  slight unbalance in the dr ive  to the  t r a n s f o r m e r ,  as 

could occur due to  differences in the voltage d r o p s  a c r o s s  the switching 

elements. If an  inver te r  w e r e  shut off while operating in  this  mode, and the 

next time it was s ta r ted ,  the f i r s t  cycle was  of such  a polar i ty  so as to 

further i n c r e a s e  the magnitude of th i s  flux, the c o r e  would be d r iven  far into 

saturation and the result ing excessive magnetizing c u r r e n t  would cause  failure.  

Thus,  unless special  precaut ions a r e  taken to  e l iminate  these problems,  

toroidal (gapless )  t r a n s f o r m e r s  should not be used for  SCR inver te r  output 

t r ans fo rmers .  F o r  fur ther  discussion and one solution to  this  problem,  the 

r eade r  is r e f e r r e d  to the l i t e ra ture .  
IO 

( A s  long as the t r a n s i s t o r s  can  handle the 

momentary high peak dissipation, i n v e r t e r s  using t r a n s i s t o r s  as the switching 

element will  not be ha rmed  by this occur rance .  ) The SCR's themselves  would 

not be damaged ei ther ,  but would fail t o  be commutated,  resul t ing in  sys t em 

failure. 

construction of these units r e su l t s  in  a res idua l  flux of approximate ly  zero.  If a 

When using o rd ina ry  t r a n s f o r m e r  c o r e s ,  the air gap inherent  in  the 
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t r a n s f o r m e r  with gap is then so designed that the maximum operat ing f l u x  

dens i ty  is less than 1 / 2  of the  saturat ion flux densi ty ,  then the appl icat ion of 

a full  half cycle  of voltage at the s t a r t  will not r e s u l t  i n  saturat ion.  However,  

it is not a v e r y  e f f ic ien t  u s e  of the c o r e  m a t e r i a l s  to opera te  them a t  only 1 / 2  

of t he i r  max imum f lux  levels. This  start ing problem can ba overcome by 

making the f i r s t  half cycle  of only 1 / 2  t h e  duration as a n o r m a l  half cycle. 

Star t ing under these  conditions is shown in the B-H loop of F i g u r e  11-12C. 

F igu re  11- 13A shows the relat ionship between the output voltage and c o r e  flux 

l eve l  for  this  s t a r t i ng  technique. 

the  c o r e  being i n  the p rope r  dynamic hys te res i s  loop f r o m  the s t a r t ,  and the 

t r a n s f o r m e r  can  be designed to  opera te  near  the sa tura t ion  flux leve l  of the 

c o r e  material. Another var ia t ion  of this half cycle  start idea  is to  use  a high 

frequency s t a r t i ng  technique, where  the inver te r  is s t a r t e d  out at l e a s t  twice 

the  n o r m a l  operat ing frequency and t h e  frequency gradual ly  lowered to  the  

operat ing frequency. 

s teady  state condition; again avoiding saturat ion while operat ing the t r a n s f o r m e r  

a t  n e a r  maximum flux leve ls  i n  s teady state operation. The  B-H loop for  this  

condition is shown in F igu re  11-12D; the relationship between the f lux  and out- 

put voltage fo r  this  s ta r t ing  mode is shown in F igu re  11-13B. 

If w e  a s sume  that B = 0, this  will r e s u l t  i n  r 

This  r e s u l t s  i n  a B-H loop which "sp i ra l s"  out t o  the  

During the commutat ion per iod,  two p a r a m e t e r s  of the SCR being commutated 

are of pa r t i cu la r  impor tance :  the turn-off-time and the dv /d t  rating. 

turn-off- t ime has  been a l r eady  d iscussed .  

The 

The dv/d t  ra t ing  is s imply the 
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maximum rate a t  which the anode voltage of the SCR can  be i n c r e a s e d  without 

causing the device to  switch into its conducting state.  

SCR due to  rapidly r i s ing  anode voltage is actually due t o  the displacement  

c u r r e n t s  i n  the gate  regioninduced by the in t e rna l  anode - ga te  capaci tance 

of the SCR. 

approximately by dv /d t  = i c / C  where ic is the c u r r e n t  into the commutating 

capaci tor ,  and is given by 

Th i s  turning on of the 

F o r  the s imple pa ra l l e l  c i rcu i t ,  the value of dv /d t  is given 

(11- 35) 

( T h i s  is one-half the c u r r e n t  into the equivalent capaci tor  of F i g u r e  11- 11) 

The  dv/dt on the commutated SCR is thus given by 

(11-36) 

fo r  values o f t  such that the capaci tor  voltage is less than 2 E / K .  

values of t, the values  of d v / d t  are less s e v e r e  than this. 

of dv/dt,  the shock excitation of va r ious  s t r a y  c i r cu i t  inductances and capaci-  

F o r  other  

Besides  th i s  s o u r c e  

tances  which occur  at commutation m a y  give rise to v e r y  high frequency 

oscil lations which yield high dv/dt 's .  

damped by putting a series RC stub s c r o s s  the SCR (anode to  cathode). 

s tub w i l l  only be effective fo r  the shock induced d v / d t ' s  desc r ibed ;  it will  have 

no value in  reducing the I / C  component of the dv /d t ;  i f  th i s  is too l a r g e  i t  m u s t  

T h e s e  oscil lations can  be effectively 

T h i s  

be reduced by a m a j o r  p a r a m e t e r  change. (i. e. inc reas ing  C). In gene ra l ,  

however, SCR's  are available which have dv/dt r a t ings  sufficiently high that  

they a r e  not a l imiting factor  i n  the application of the SCR. 
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An impor tan t  rating of the SCR jus t  being turned on at th i s  t ime  which m u s t  

be observed  is i t s  d i /d t  rating. 

it c a r r i e s  is localized i n  a s m a l l  a r e a  where it was  first turned on. 

the ini t ia l  c u r r e n t  allowed by the c i rcu i t  is too high, the c u r r e n t  dens i t ies  i n  

that  portion of the SCR jus t  turned on can cause degrading o r  des t ruc t ive  

local  heating. 

When an  SCR is  first turned on, t he  c u r r e n t  

Thus,  i f  

Methods used to  minimize  this problem are: 

. 1.  To t u r n  on as much of the SCR as possible as soon as possible.  This  

m e a n s  the  use of fas t  r is ing gate  signals with a peak power capabili ty 

approaching tha t  of the allowable gate dissipation. 

2. To  l imi t  t he  anode c u r r e n t  of the  SCR during the tu rn  on to  as  low a 

value as possible. 

Some c i r cu i t s ,  for  example  t h e  s e r i e s  inverter ,  have small init ial  c u r r e n t s  

( s e e  equation 2c, Appendix I )  while o thers ,  like the para l le l  i nve r t e r ,  requi re  

the SCR to  c a r r y  a substantial  ini t ia l  current  ( I  ). 

c u r r e n t  is l imited to a low value for  the f i r s t  few mic roseconds  by putting a 

small saturat ing r e a c t o r  in  s e r i e s  with each anode lead. 

In this  case ,  the ini t ia l  
0 
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STARTING AND STEADY STATE WAVEFORMS 
McMURRAY-BEDFORD INVERTER RESISTIVE LOAD (WITH TUNED FILTER) 

l i l ;  

FIGURE 11-10 
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McMURRAY-BEDFORD INVERTER WAVEFORMS INDUCTIVE LOADING 
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Study of 3200Unver t e r  Configuration 

With th i s  background of the types of c i r cu i t s  available, along with the i r  signi-  

ficant cha rac t e r i s t i c s ,  such as output voltage waveforms,  allowable loads,  

and output var ia t ion with load etc., a study can be made  of the possible  

approaches  to  any of the inver te r  groups  described in  the  Methodology section. 

The  problem of the 3200dlOKw inve r t e r  was considered f i r s t  as it appea red  to  

be the m o s t  difficult and no technique appeared to  offer a c l ea r  advantage. The  

a p p o a c h e s  cons idered  (cataloged according to the basic  power switching device) 

were :  

1. 

2. Silicon controlled r ec t i f i e r s  (SCR) 

3. Gate  controlled switches (GCS) 

Power  t r a n s i s t o r s  (Germanium and Silicon) 

The merits and disadvantages of techniques utilizing these  devices will  now be 

d iscus  sed. 
I Power  Switching Devices  

1 .  Power  T r a n s i s t o r s  

The  ge rman ium t r ans i s to r  has  the  lowest forward  voltage d rop  of all the 

devices  l i s ted  (as low as 0.45 v @65A for 65 amp  devices of suitable volt-  

age rating).  The d r i v e  r equ i r emen t s  a r e  modera te ,  being l e s s  than those 

of s i l icon t r a n s i s t o r s  but g r e a t e r  than those of SCR's o r  GCS's. 

speed  of the  devices  at the higher current  ra t ings  (50A) is adequate to  

allow operat ion in t h e  switching mode a t  3200 cycles  without excess ive  

switching lo s ses :  ( the switching l o s s e s  a re  no m o r e  than th ree  t i m e s  the 

The 
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forward  conduction 10s ses. ) However,  t r a n s i s t o r s  sui table  fo r  opera t ion  

with the pulse  modulation techniques (with the i r  min imum s q u a r e  wave 

operating frequency r equ i r emen t  of approximately 5 x the fundamental  

frequency) a r e  avai lable  only i n  silicon. 

tu res  of germanium power devices  genera l ly  a r e  110OC. 

The allowable junction t e m p e r a -  

Considerations i n  the  use  of s i l i con  t r a n s i s t o r s  are  approximate ly  the 

same as those of germanium t r a n s i s t o r s  with the d i f fe rences  that with 

silicon: 

1. 

2.  

3. 

The maximum junction t e m p e r a t u r e s  are 175-200°C, allowing higher 

ambients  and /o r  device dissipation. 

The fo rward  l o s s e s  are about double and the d r ive  l o s s e s  four  times 

those  of germanium units. 

Available switching speeds are about twice as f a s t  as those obtainable 

with germanium ( in  comparable  s i z e s )  with ex t r eme ly  fast switching 

( =  0.p s e c )  being obtainable i n  the lower ranges.  (10A) 

To handle the  10 Kw load, the number of t r a n s i s t o r s  of e i the r  type that would 

be required can  be de termined  by a few s imple  calculations. 

F o r  the f i r s t  example,  a sys t em which uti l izes a pulse  modulation technique 

with a common squa re  wave i n v e r t e r  was considered.  

the power sect ion of such a sys t em is shown i n  F igu re  1 - 1 . 
A block d i a g r a m  of 
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Since the peak collector cur ren t  i s  generally the l imitation in the application 

of t r a n s i s t o r s  to switching-type inver te r  c i rcui ts ,  and specifications requi re  the 

device to  handle 20070 of ra ted  cur ren t ,  the maximum ave rage  power output of 

the above sys t em i s  2 x 10 = 20 Kw. 

(at full  load) and allowing for a minimum battery voltage on a nominal 28 volt 

Assuming an overa l l  efficiency of 90% 
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20 103 
( . 9 )  (22.4)  

= 1000 amp.  sys tem of 22.4 volts,  the input c u r r e n t  will then be 

(If the s a m e  inve r t e r  is  used to  supply the  a. c. power for  all t h r e e  modula tors ,  

as it i s  i n  this  ca se ,  the instantaneous power r equ i r emen t s  for  the t h r e e  

individual phases  will tend to  cance l  one another ;  in  the  c a s e  of a balanced load, 

t h i s  cancellation will be exact. ) A t  lOA/ t rans is tor ,  t h i s  will r e q u i r e  a n  

absolute min imum of 100 t r a n s i s t o r s  i n  p a r a l l e l  for  each  switch i n  the  i n v e r t e r  

circuit .  

shown schematical ly  i n  F i g u r e  1-2) a total  of at l ea s t  200 t r a n s i s t o r s  would 

be needed for the square m v e  i n v e r t e r  sec t ion  of such a scheme.  T h i s  is 

using high speed t r a n s i s t o r s  with a max imum col lector  c u r r e n t  of 10A each. 

Since a minimum of 2 switches is r equ i r ed  ( a typical  c i r cu i t  is 

Needless  to  say ,  this a p p e a r s  t o  be unreasonably l a r g e  f r o m  a re l iab i l i ty  

point of view. Using the l a r g e r  but s lower  50A t r a n s i s t o r ,  the  number  could 

be cut to 40 total ,  but the switching d iss ipa t ion  of 130 w a t t s / t r a n s i s t o r  (at 

15, 000 cps ,  20070 load) would be out of bounds; the switching s tage efficiency 

a t  100% load would be only 7870. However,  some  technique which allowed the  

switching to be pe r fo rmed  when the co l lec tor  c u r r e n t  was at o r  n e a r  z e r o  

might  reduce t h i s  l o s s  to a n  acceptab le  value, 

would r equ i r e  additional semiconductors  i n  the  modula tors  (although th i s  

might  be pe r fo rmed  with magnet ic  c i r c u i t r y ) ;  t hese  would probably be SCR's o r  

GCS's due to the vol tages  involved and the  a. C. operation. 

This  pu lse  modulation i n v e r t e r  

Another approach  would be to  p e r f o r m  the  invers ion  at 3200 cps ,  thus  reducing 

the switching l o s s e s  over  the pulse  modulat ion schemes .  (Th i s  would m e a n  
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using a n  i n v e r t e r  of the quasi-square wave or s tepped wave types.)  If the 

inversion w e r e  handled by t h r e e  s e p a r a t e  inve r t e r s ,  one f o r  e a c h  output phase,  

the a v e r a g e  c u r r e n t  handled by each  inverter  sect ion would have a maximum 

of 1000/3 = 333 amp. 

ba t t e ry  voltage ( w o r s t  case) and a n  efficiency of 9070. 

7T i n  each  phase  input could rise t o  333- E 520 amp. The re fo re ,  e a c h  side of a 
each  phase  switch would need a ininimum of 520/50 2' 11 t r a n s i s t o r s ,  f o r  a 

to ta l  of 66 t r a n s i s t o r s  f o r  a 3 0, system. 

would be less than 1 / 5  of those calculated for the previous c i r cu i t  because 

Th i s  is calculated on the basis of a 20070 load, min imum 

Thus,  the peak c u r r e n t  

The switching l o s s e s  in  th i s  example 

1. The switching is done at a lower frequency ( 1 / 5  that of the pulse  

modulation s y s t e m  ) and switching losses are d i r ec t ly  proport ional  

t o  f requency fo r  the r anges  considered. 

2. In n o r m a l  operation, the switching does not occur  at the t i m e s  of 

max imum col lector  cu r ren t ,  as i t  does i n  the pulse  modulation scheme. 

(Switching l o s s e s  are d i r ec t ly  proportional to the collector c u r r e n t  at 

the t i m e  of swltching.) 

Figuring l o s s e s  fo r  the wors t  c a s e  (200% load, switching occurr ing at peak 

col lector  c u r r e n t )  the following r e s u l t s  are obtained with a Bendix 2N2358 

gexmanium 50A high speed switching t r ans i s to r :  

Switching l o s s e s  (Ic = 50A, tr+tf = 16psec)  

R e v e r s e  10s ses 1 watt  

25.6 wat ts  
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Forward  l o s s e s  

Drive l o s s e s  

Total 

11.2 wat ts  

3. 7 wat ts  

41. 5 wat ts  

W i t h  a t h e r m a l  r e s i s t a n c e  of 0.5'C/watt and a maximum junction t e m p e r a t u r e  

of 110'G, the  t r a n s i s t o r  mounting base  m u s t  be held to 89'C o r  below. 

Th i s  is a t rans ien t  condition lasting fo r  only 5 sec ;  the maximum s teady  state 

dissipation is less than 1 / 2  of the  amount calculated;  the  maximum mounting 

base  t empera tu re  under s teady-s ta te  conditions will be at least 100 ' C. 

F o r  the s a m e  wors t  c a s e  example as  calculated fo r  the ge rman ium t r a n s i s t o r s ,  

the losses  in  a sil icon t r a n s i s t o r  a r e :  

Switching l o s s e s  (at IC 50A) 

Reverse l o s s e s  

Forward  l o s s e s  

Drive l o s s e s  

13  wat ts  

1 watt 

31 wat ts  (ca lcu la ted  for  
Silicon T r a n s i s t o r  
Corp  #2107) 

15 wat ts  

Tota l  60 wat ts  

With a t h e r m a l  r e s i s t a n c e  of 0.5'C/watt, the  maximum junction t e m p e r a t u r e  

allowed with this  unit 

than the 89.C permi t ted  by the  ge rman ium devices .  

200 -. 5 (60) I 170.C. This  is considerably higher  

Both these calculat ions have been pe r fo rmed  fo r  the w o r s t  c a s e ;  at only 100% 
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load, the  switching l o s s e s  would be 

the  fo rward  l o s s e s  would be reduced by a factor of four. 

t r a n s i s t o r  approximates  a fixed r e s i s t ance ,  the fo rward  l o s s e s  v a r y  as the  

s q u a r e  of the cur ren t ) .  Thus,  the full load lo s ses  fo r  the  ge rman ium t r a n -  

s i s t o r s  would be less than 20. 3 watts and the si l icon l o s s  would be l e s s  than 

30. 5 watts. 

about 1 / 2  those calculated above, and 

(Since a sa tu ra t ed  

Even at these  r a t e s ,  the switching efficiency of the si l icon t r a n s i s t o r  power 

s t age  alone will be only 10,000 = 83%. This  value would 
10,000+66 (30.5) 

improve  with be t t e r  t r a n s i s t o r s  (i. e. f a s t e r ,  lower leakage,  lower sa tura t ion  

r e s i s t ance ,  higher  gain) a n d / o r  c i r cu i t  changes. 

include techniques for  optimizing the switching pa t te rn ,  reducing the c u r r e n t  

a n d / o r  voltage at the time of switching, o r  reducing the  effective switch 

r e s i s t ance  by connecting additional units in parallel .  

reduced  by providing a d r ive  proport ional  to the instantaneous col lector  c u r r e n t  

r a t h e r  than a square  wave d r ive  adequate for the l a r g e s t  co l lec tor  c u r r e n t  

(though a t  the  expense of i nc reased  complexity).  

of units which m a y  be opera ted  i n  para i ie l ,  these c i r cu i t s  offer possibil i t ies 

fo r  i nc reas ing  re l iab i l i ty  through redundancy without significantly increas ing  

the  c i r cu i t  complexity. On the  other  hand, because of the  l a r g e  number of 

e lements ,  s o m e  f o r m  of redundancy will probably be n e c e s s a r y  i n  o r d e r  t o  

main ta in  the  reliability. 

Poss ib l e  c i r cu i t  changes 

Dr ive  l o s s e s  can  be 

Because  of the l a r g e  numbers  
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Any of the var ious para l le l  switching c i rcu i t s  d i scussed  e a r l i e r  could be used 

with these t r a n s i s t o r s ;  however, the bridge c i rcu i t s  would not be d e s i r a b l e  at 

the 28 volt level  cons idered  h e r e  because  they would r e q u i r e  twice as many 

t r ans i s to r s  (and have about twice the semiconductor  l o s s e s )  as the pa ra l l e l  

inverter  with center-tapped t r a n s f o r m e r .  A s  the input voltage i n c r e a s e s ,  the 

number of t r a n s i s t o r s  r equ i r ed  in para l le l  to  handle the input c u r r e n t  dec reases ;  

thus higher input voltages are advantageous, 

goes too high, the bridge c i r cu i t s  would become n e c e s s a r y  because  of the 

voltage l imitations of available t r ans i s to r s .  (Other  conditions remain ing  

equal, the t r a n s i s t o r s  i n  a bridge are subject to  only one-half t h e  voltage 

as those in  a center  -tapped t r a n s f o r m e r  a r rangement .  ) 

However,  as  the input voltage 

2. Silicon Controlled Rect i f iers  

SCR's have the advantage of being able to handle v e r y  l a rge  cu r ren t s ,  

both on continuous and pulse bases .  They are available in ra t ings up to  

400A rms, 250 A average,  with peak c u r r e n t  capabili t ies in the thousands 

of amperes .  They are a l so  available in high voltage rat ings (up to  1300 

volts). The i r  fo rward  voltage d rop  is slightly higher than tha t  of si l icon 

t r ans i s to r s  and tends to r e m a i n  constant as the c u r r e n t  is increased.  

(Trans is tor  d rop  (sa tura ted)  is a lmos t  a l inear  function of c u r r e n t  and 

can be r ep resen ted  as a r e s i s t ance . )  However, the fact  that  S C R ' s  m u s t  be 

commutated off by a n  ex terna l  s o u r c e  adds c i rcu i t  complexity and, in 

par t icular ,  r e su l t s  i n  additional l o s ses .  
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The amount of the commutation l o s s e s  as coinpared  t o  the (reflected) 

load c u r r e n t  l o s s  i n  a n  inve r t e r  c i rcu i t  s e r v e s  as a good indication as to  

the  suitability of the c i rcu i t  fo r  t he  intended operation. These  l o s s e s  can  

be computed fo r  the f i r s t  c i rcu i t  under considerat ion ( the McMurray-  

Bedford c i r cu i t )  as follows : 

The first problem is t o  de t e rmine  the  value of the  commutating capaci tor  

s ince  it de t e rmines  the  maximum curren t  that  can  be commutated as wel l  

as many of the c i r cu i t  cu r ren t s ,  and except fo r  the select ion of the basic 

c i r cu i t  i tself ,  is the  init ial  s t ep  in  inver te r  design. 

Assume  the maximum c u r r e n t  to be commutated is Io amperes .  (Th i s  

will cor respond to a 20070 load a t  a power fac tor  which p l aces  the peak 

of the load c u r r e n t  pu lse  at the t ime when commutat ion occurs .  ) Let  the 

minimum supply voltage be E. 

a turn-off- t ime of t 

Then, the  capaci tance r equ i r ed  to  provide 

is obtained by a rea r r angemen t  of equation 11-30 t o  
0 

obtain: I O f O  C = -  
zE 

obtain: 

The  next problem is to evaluate  the cur ren ts  i n  the c i r cu i t  (and pa r t i cu -  

l a r l y  i n  the  SCR). F o r  the McMurray - Bedford c i rcu i t ,  much of t h i s  

ana lys i s  had a l r eady  been done i n  Appendix 11, and r e fe rence  will be made 

to  that. 

occur  at 100% r e s i s t i v e  load with a tuned filter, where  the s inusoidal  

load c u r r e n t  would be i n  phase with the i n v e r t e r  switching s tage output, 

and hence be going through z e r o  at the ins tan t  of commutation) the SCR 

F o r  negligible c u r r e n t  a t  the t i m e  of commutat ion (which could 
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current  is given by equation 11-2, which for  the  s teady s ta te  c a s e  where  

v = -2E, has  the value 
0 

T h i s ,  of course ,  is subject to the r e s t r i c t ions  imposed  in the der ivat ion 

of equation 11-2; in  par t icu lar ,  it appl ies  only for  O s e S  

is given by equation 11-6. If K, the react ive tap fract ion ( r e f e r  to  F i g u r e  

11-1 and the  discussion on page 5 7  

where  5 a 

) is  se t  at 0.8, then the t ime  r equ i r ed  

f o r  the  c u r r e n t  t rapped  in  the commutating choke to  r e a c h  z e r o  is given 

by equation 11-10. With Vo = -2E, k = 0.8 and using the approximation 

, t h i s  t ime  ( 3 in  equation 11-10) equals 1 6 p  

seconds. 

due t o  t h e  commutat ion c i rcu i t  is then as shown in  F igu re  1-3. 

The c u r r e n t  waveform in the SCR (and commutating choke) 

The time 

at which the waveform changes f r o m  a sinusoid to a l inear ly  dec reas ing  

ramp is given by equation 11-6 as 

The ave rage  value of this  c u r r e n t  pulse  ( ave raged  over a half cycle of the 

operating frequency) can  be easi ly  de t e rmined  as d e s c r i b e d  below. 

currents  are used in t h e s e  calculations because  the voltage d rop  a c r o s s  

the SCR is f a i r ly  constant with cu r ren t ,  thus making the ave rage  c u r r e n t  

a better indicator of SCR l o s s e s  than rms cu r ren t ,  The s a m e  is t r u e  for  

diode losses .  ) Approximating the exact  c u r r e n t  waveform (shown in 

(Average  
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F i g u r e  1 - 3  as a solid l ine) with a triangular c u r r e n t  waveshape (shown 

dotted in  F igu re  1-3)  of height equal to the ac tua l  c u r r e n t  max imum and 

base  equal  to  the to ta l  time requ i r ed  for the pulse ,  the a v e r a g e  c u r r e n t  . 

i n  one SCR (during the half cycle that  i t  is conducting) due t o  commuta-  

where  is the pe r iod  of the fundamental f requency of operat ion of 

the inverter .  Substituting the values of peak c u r r e n t  (equation 1 -2)pulse 

length (equation 1-3) and fundamental frequency fo 

equation, t h e r e  r e s u l t s :  

into th i s  

Substituting the value of C f r o m  equation 1 - 1 into equation 1-4 and 

real iz ing that, i f  I 

the average  c u r r e n t  during the conduction pe r iod  f o r  each  SCR a t  the 

is the  peak cu r ren t  during the 20070 overlaad condition, 
0 

10070 load condition will  be 

Then, t he  r a t i o  of the ave rage  SCR cur ren t  due t o  all c a u s e s  

bavg ( c o m m )  j -  I (load)] t o  the average c u r r e n t  due t o  the (reflected) 
avg 

load c u r r e n t  only kavg is Iavg ( c o m m )  + Iavg (load) . 
7 7 * 6  fo  [-; -+ t.] - Io 1 122 fo to+  1 

n- 0 - 7 )  
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For the c a s e  of the 3200 cycle inve r t e r ,  and using a 2 O p s e c  turn-off-  

t ime, t h i s  r a t io  becomes  1 C 122 ( 3 . 2  x 10 ) ( 2  x 

Thus, with total  SCR l o s s e s  8.8 t i m e s  the l o s s e s  due t o  the ref lected 

load c u r r e n t  only, the McMurray  -Bedford i n v e r t e r  is not suitable f o r  

efficient operation at th i s  high a frequency. (Less  than 1 / 8  of the to ta l  

switching device l o s s  arises f r o m  providing power to  the load.) 

3 = 8.8 

A m o r e  efficient (and complex) p a r a l l e l  i nve r t e r  ( t he  McMurray  c i r cu i t )  

i s  shown in  F i g u r e  1-4. H e r e ,  the four additional SCR's  Q3, 4, 5, and 6 

are used to  achieve commutation without turning on the other  power 

switching SCR. Th i s  allows quas i -Q  qua re  wave operation. However,  the 

main purpose of th i s  c i r cu i t  is the reduction of commutating l o s s e s  

brought about by the fact that the commutating energy  m e r e l y  moves  back 

and for th  through the tuned c i r cu i t  to  achieve commutation in s t ead  of 

being l a rge ly  diss ipated and l a t e r  resuppl ied f r o m  the d. c. s o u r c e  each  

half cycle. With th i s  improvement ,  the commutating l o s s e s  i n  the S C R ' s  

are considerably reduced f r o m  those of the McMurray  - Bedford c i rcu i t .  

The operation of t h i s  c i r cu i t  can be analyzed as  follows: Assume  SCR 1 

(Figure 1-4) is on and SCR 4 and SCR 5 have been simultaneously gated 

on so that Cc has  acqu i r ed  a cha rge  such that  the posit ive side of Cc is 

the one connected t o  Lc. 

and SCR 6 are simultaneously gated on, and C , d i s c h a r g e s  through L , 

SCR 3, SCR 6, the load and, when the d i scha rge  c u r r e n t  has  bail t  up to  a 

Then, when i t  is t i m e  t o  t u r n  off SCR 1, SCR 3 

L C 
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high enough value,  through D , causing a r e v e r s e  bias of about 1 volt t o  
1 

appea r  on the anode of SCR 1.  

r e v e r s e  bias c a n  be maintained f o r  the required turn-off-time. 

With proper choice of components,  th i s  

A port ion of the c u r r e n t  waveform produced by the turning on of SCR 3 

and 6 i s  shown i n  F i g u r e  1-5. H e r e  again, Io is the maximum c u r r e n t  

which the c i r cu i t  is designed to  commutate and t 

provided turn-off-time. 

frequency with pe r iod  4 to, and provide a peak c u r r e n t  of @ Io, the 

is the minimum c i r cu i t  
0 

With Lc and C chosen to  r e sona te  a t  a 
C 

c u r r e n t  taken by the resonant  c i r cu i t  will be g r e a t e r  than Io fo r  a pe r iod  

of to. T h i s  r e sonan t  cu r ren t ,  which flows through SCR 3 and SCR 6 ,  h a s  

a n  a v e r a g e  value (when averaged over  1/2 pe r iod  of the fundamental  

Since c u r r e n t  flows through two I where ,  again.f - - 
SCR’s,the r a t io  of total  l o s s e s  to  losses  due to  forward  c u r r e n t  equals  

0 -  r, 

0 - 9 )  

F o r  a 3 2 0 0 ~  inve r t e r  with minimum turn-off-time of 2 0 p s e c ,  t h i s  value 

becomes  2.45. 

c i r cu i t  being equal t o  those of a (silicon) t r ans i s to r i zed  i n v e r t e r  and 

hence about 1 1 / 2  times those of a .germanium t r a n s i s t o r  i nve r t e r .  

Th i s  r e s u l t s  i n  the 10070 load SCR l o s s e s  f o r  t h i s  i n v e r t e r  
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However, the SCR c i r cu i t s  a l so  have additional l o s s e s  due to  the 

commutating c u r r e n t s  flowing in the commutating choke and capaci tor ,  

reactive diodes, and output t r a n s f o r m e r  p r imary .  The McMurray  c i rcu i t  

i s  a l so  super ior  to  the McMurray-Bedford inver te r  in these r e s p e c t s ,  and 

t h u s  has much improved  commutat ion lo s ses  over  the McMurray-Bedford 

circuit. This  l o s s  is  not obtained without penalty, however. The number  

of SCR's p e r  power s tage has inc reased  f r o m  2 to  6 and the dr ive  c i r -  

cuitry r equ i r ed  has  i n c r e a s e d  in complexity, (On the other  hand, th i s  

circuit  does allow non-zero  clamped quas i - square  wave operation. See 

page 30 for  a discussion of z e r o  clamping.)  Also, in  the McMurray-  

Bedford circui t ,  a c u r r e n t  to  commutate  g r e a t e r  than the design maximum 

(Io) s imply  d e c r e a s e s  t h e  available tu rn  off t i m e  by a proport ional  amount. 

F o r  example,  i f  t is available with a c u r r e n t  of Io, then is the 
0 

1.5 
available turn-off-t ime with 1 e 1.5 Io, 

turn-off-time provided, ( I t  is  anticipated that 1 2 p s e c  turn-off- t ime SCR's 

W i t h  the  safe ty  m a r g i n  in the 

would be used, for  example,  in a c i rcu i t  designed to  provide a minimum 

of 2 0 ~ s e c .  ) t he  c i rcui t  would still operate  under this  condition. 

in the McMurray c i rcu i t  (designed for  to seconds at a c u r r e n t  of I o )  since 

5f0 ) ~ S T ,  (where  \Tr& is the absolute maximum of the 

current  pulse taken by the commuta tor  c i rcu i t )  t h e r e  would be absolutely 

no turn-off t i m e  proyided by the c i rcu i t  and c i rcu i t  fa i lure  would be 

However ,  

certain. 
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The s e r i e s  type inver te r  p o s s e s s e s  the advantage of not requir ing 

additional commutat ion devices;  for the p rope r  load range,  it is self-  

commutating. 

r e s i s t a n c e  to  below a cer ta in  value) can be c i rcumvented  by putting an 

appropriate  capaci tor  a c r o s s  the load terminals.  

at no load. 

under these  conditions, requir ing that the output of the inver te r  be f i l t e red  

in  the s a m e  fashion as the para l le l  inverters .  

shunt capaci tor  (which may  be considerable i f  the shunt capacitor is a l s o  

r equ i r ed  to tune out a possible inductive component of the load) r e su l t s  in  

inc reased  losses .  In addition, clamping schemes  which operate  in  a 

fashion s i m i l a r  to  the react ive diodes of the pa ra l l e l  inver te r  a r e  needed 

This  "proper" load requi rement  (which r e s t r i c t s  the load 

This  a l l  ows operation 

However,  the input frequency will still change considerably 

The c u r r e n t  through the 

to  s u p p r e s s  excessive voltages which would otherwise occur  at no load 

o r  shor t  c i rcui t  operation. 

3 
Repor ts  

s e r i e s  i nve r t e r s  which mus t  operate  over a 3:l load range;  o u r r e q u i r e -  

men t s  a r e  even m o r e  difficult than that, operation to  no-load being 

required.  Also, the s e r i e s  inver te r  suffers f r o m  the s a m e  reliabil i ty 

indicate an  efficiency of only about 70% can  be expected for  

drawback  that occu r s  with all SCR inver te rs  - -  one unsuppressed noise 

pulse  f r o m  any source  can cause  a misf i re  and shut down the inver te r ,  

unless s o m e  redundant methods a r e  used to  allow shutdown of a stage o r  

the inve r t e r  is automatically res ta r ted .  In e i ther  case ,  the ex t ra  c i r cu i t ry  
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required t o  account fo r  the misfire is added components which i n c r e a s e s  

weight and d e c r e a s e s  reliabil i ty.  Also, the higher l o s s e s  in  SCR's  as 

compared to  germanium t r a n s i s t o r s  and the r e c e n t  i n c r e a s e s  in  maximum 

operating junction t e m p e r a t u r e s  of germanium t r a n s i s t o r s  ( t o  1 10'C, as 

compared t o  the 125.C allowable fo r  SCR's)  r e s u l t  i n  the two devices 

requiring about the same mounting base t empera tu re .  Thus,  f r o m  a 

the rma l  point of view, SCR's  p o s s e s s  l i t t l e  advantage over  g e r m a n i u m  

t r ans i s to r s ,  and are less efficient. Although the number of t r a n s i s t o r s  

required f o r  the power switching s tage of the 10 KW unit is f a i r l y  l a rge ,  

because of the fact  that  they are essent ia l ly  connected in pa ra l l e l ,  

redundant techniques will  be f a i r ly  e a s y  t o  apply. 

at the high power end of the anticipated s i z e s ;  the lower power units of 

the same type ( the  r ange  extends down to  only 2 KW) will r e q u i r e  fewer  

t r a n s i s t o r s  ( the number i n  the switching s tages  is proport ional  t o  the 

maximum power output desired) .  

Also, the 10 KW is 

F r o m  a weight point of view, the additional weight r equ i r ed  by the many 

t r a n s i s t o r s  over  a few SCR's  would be expected t o  be made up by the 

elimination of the commutating capac i to r s  and chokes, as well  as the 

reduction in  the s i z e s  of the output t r a n s f o r m e r s  and heat s inks made 

possible by the i n c r e a s e d  efficiency of the t r ans i s to r i zed  devices  and  

absence of the high peak c u r r e n t s  a s soc ia t ed  with SCR commutation. 
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The "papert '  re l iabi l i ty  of the SCR circuits with t h e i r  smaller p a r t s  count 

can  be made up by eas i ly  applied redundancy techniques to  the switching 

s t age  t r a n s i s t o r s .  Safety margins  on t r ans i s to r  voltages can  gene ral ly  

be introduced without any weight o r  efficiency penal t ies ;  increasing the 

turn-off-time m a r g i n  in  a n  SCR i nve r t e r  means  inc reas ing  the s i z e  (and 

weight of the commutating capaci tor  and there  by inc reas ing  the l o s s e s  

in  the c i r cu i t  components responsible  for charging i t  up. 

3. Gate Controlled Switches 

T h e  gate  control led switch is similar t o  the SCR except that  i t  c a n  a l s o  

be turned off a t  the gate. 

c u r r e n t  r a n g e s  ( 6 A )  with s o m e  improvement expected i n  the n e a r  future. 

These  a re  present ly  available only in  low 
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Since they appear  t o  be restricted t o  c u r r e n t  r anges  below those of 

t r a n s i s t o r s  and have a higher forward  d r o p  (2v @I 5A) they do  not appear  

advantageous fo r  th i s  i nve r t e r .  

voltage rat ings and improved  t u r n  off (ove r  SCR's)  would favor  them i n  

inve r t e r s  operating at higher voltages where c u r r e n t s  are lower ( fo r  a 

given power rat ing)  and t r a n s i s t o r s  unavailable. 

However, t h e i r  combination of high 

A typical c i r cu i t  employing the gate  controlled switch is shown i n  F i g u r e  

1-6. It is v e r y  similar t o  the SCR c i r cu i t s  described earlier ( F i g u r e  ) 

with the exception that  the commutating choke has been el iminated and the 

commutating capacitance has  been spli t ,  made smaller, and connected 

from gate (of one GCS) t o  anode (of the other GCS). A r e s i s t o r  is a l s o  

inser ted in series with i t  to  limit the peak r e v e r s e  gate  c u r r e n t  t o  a safe 

value. The operation of t h i s  c i r cu i t  is akin t o  that of a conventional f l ip- 

flop. A positive pulse  coming in  to  the ga t e s  t u r n s  on one GCS and l eaves  

the other  on. The  sudden d r o p  i n  anode voltage of the first GCS is 

coupled through R a n d C  to  the gate  of the other GCS, turning i t  off. The  

next positive pulse  reverses the p r o c e s s ,  turning on GCS 1 and turning off 

GCS 2. 
7 

The output of t h i s  c i r cu i t  is a s q u a r e  wave. 

Like the SCR, the GCS has a turn-off-t ime which v a r i e s  with load and temp-  

e r a t u r e  and during which, f o r  the GCS, its gate  m u s t  be held negative. 

A l s o ,  as with SCR circui ts .  GCS i n v e r t e r s  can  mis-fire, ending up with 

both power switches on and the c i r cu i t  inoperative.  
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E 

11 B r a l l e l i n g  Techniques 

I T h e s e  in i t ia l  considerat ions would appear to  f avor  the t r a n s i s t o r  c i r c u i t s  

I because of weight, efficiency and reliability. However,  the paral le l ing 

I problem in  t r a n s i s t o r  c i r cu i t s  mus t  be examined closely to  s e e  i f  it d o e s  

not p r e s e n t  other  problems.  
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Paralleling techniques will  now be investigated. 

One method is  to  i n s e r t  balancing r e s i s t o r s  in series with one o r  m o r e  

leads of each t r ans i s to r .  Unfortunately, the m o r e  effective th i s  method 

i s  to  be, the l a r g e r  the r e s i s t o r s  must  be, and the g r e a t e r  the power 

wasted. The use of balancing r e a c t o r s ,  though a n  efficient solution to the 

problem for  the c a s e  of diodes,  m u s t  be careful ly  analyzed for  t r ans i s to r s  

because s o m e  of the s i m p l e r  c i r cu i t s  can r e s u l t  i n  a voltage t r ans i en t s  of 

4E (where  E is the ba t t e ry  voltage) appearing a c r o s s  the t r a n s i s t o r s  fo r  

a short  t ime  due to  the difference in the switching speed of the t r a n s i s t o r s  

An al ternat ive to  the use  of balancing r e s i s t o r s  o r  r e a c t o r s  to achieve 

cu r ren t  balancing when paralleling t r a n s i s t o r s  ( o r  S C R ' s )  is to  b r e a k  

up the output t r a n s f o r m e r  into N s m a l l e r  units ( each  with l / N t h  the 

secondary voltage rating of the original t r a n s f o r m e r )  and connect the 

secondaries  of t hese  units in s e r i e s  to obtain the originally d e s i r e d  oatpiit. 

This technique is shown in the d i a g r a m s  of F i g u r e  1 -7A and 1 -7B. 

the s a m e  load c u r r e n t  flows in  all of the secondar i e s ,  the ref lected load 

c u r r e n t s  c a r r i e d  by all the t r a n s i s t o r s  which a re  ccnducting a t  any given 

t ime a r e  equal. Th i s  balancing is  obtained at the expense of splitting up 

Since 

one l a r g e  t r a n s f o r m e r  into N smaller ones of the same to ta l  ra t ing,  a p r o -  

cedure that r e s u l t s  i n  a n  ove ra l l  i n c r e a s e  in  weight and l o s s e s  in the out- 

put t r a n s f o r m e r s .  However,  the p r i m a r i e s  now need not be excited in  all 

\ 

paral le l ;  each  s tage can be tu rned  on a t  a slightly different  t ime  to pracluce 
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a stepped output o r  synchronous switching waveform. Thus,  the 

additional weight and l o s s e s  reqil ired by the individual t r a n s f o r m e r s  can  

be par t ia l ly  offset by lower f i l t e r  r equ i r emen t s  due to  the reduced 

harmonic content of the output of the switching s t ages ,  (and the absence  of 

any additional components which would be otherwise r equ i r ed  fo r  balancing. 

Which technique i s  be t t e r  will have to  be decided on the bas i s  of fu r the r  

s tudies  comparing the weights and lo s ses  of the output t r a n s f o r m e r (  s) ,  

balancing r e a c t o r s  ( i f  used) and f i l t e r s  of the two s y s t e m s  and consider ing 

the complexity of the d r ive  c i r cu i t ry  and ease of applying redundant 

t e c hnique s for  reliabil i ty imp r overne nt . 
I11 Voltage Regulation 

Methods of voltage regulation w i l l  be considered next. Basically,  t h e r e  

are  t h r e e  main  techniques for regulating the output voltage of a n  i n v e r t e r  

against  va r i a t ions  in  load and/or  input voltage. T h e s e  a r e :  

1. Regulating t h e  d. c. input voltage to the i n v e r t e r  stage. A l l  techniques 

studied s o  far fo r  t h i s  purpose  have r e q u i r e d  a t  l e a s t  one s e m i -  

conductor in s e r i e s  with the main  load c u r r e n t  path. 

upper l imi t  on the efficiency of such r egu la to r s ,  and can r e s u l t  in 

re la t ively high l o s s e s  when operating on low voltage sys t ems .  

number of semiconductors  is a l s o  inc reased ;  the regulator  would 

r e q u i r e  a t  l e a s t  half as many semiconductors (of the s a m e  type) as 

the to ta l  number in the power switching stages.  

This p l aces  a n  

The 

The advantages of 

1 2 5  



2. 

d. c. regulation is that i t  provides  a n  a lmost  constant d. c. input 

t o  the power switching s t ages ,  thus allowing them to  be optimized 

fo r  only one input level. 

plex waveforms fo r  harmonic  reduction without dis tor t ion p r o b l e m s  

caused by deviations f r o m  the idea l  waveform brought about by the 

necess i ty  to v a r y  some p a r a m e t e r  of the gene ra t ed  waveform to  obtain 

voltage regulation. 

f ied i f  voltage regulation is per formed on the input d. c. , since the 

optimum spac ing  between s t eps  of a mult i -s tepped wave c a n  be main-  

tained independently of the input voltage and load var ia t ions.  

Input regulation a l s o  allows the u s e  of com-  

The fi l tering and i n v e r t e r  logic a r e  a l s o  s impl i  - 

In view of the l a r g e  c u r r e n t s  r equ i r ed ,  and the relat ively low voltage 

available for  the 28 volt unit, i t  was  felt that  the d. c. regulat ion 

techniques w e r e  not suitable fo r  this application. 

Varying the f o r m  of the i n v e r t e r  output waveform 

c i r cu i t  to v a r y  the fundamental  component of the switched output 

waveform, The quas i - squa re  wave is a good example of th i s  tech-  

nique, although m o r e  complex waveforms a r e  possible  and may be 

des i r ab le .  

between two gene ra t ed  waveforms to  yield a va r i ab le  vec to r  sum 

a r e  the m o s t  efficient f r o m  a semiconductor standpoint but r e q u i r e  a 

l a r g e r  output t r a n s f o r m e r  capabili ty than needed with other  techniques. 

i n  the switching 

Methods fo r  voltage regulation by varying the phase 
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T h i s  efficiency stems f r o m  the fac t  that  at the lowest input voltage 

and heaviest  load, where the input cu r ren t  is g rea t e s t ,  all the 

semiconductors  are  operated in  phase and all contribute to  the output 

power at all t imes.  

demands  a re  less, and the outputs of the  s e p a r a t e  power switches no 

longer  i n  phase,  at s o m e  port ions of the cycle, one power switching 

s t age  will be supplying power t o  another stage,  which is r e tu rn ing  

that  power t o  the i r  common source  via r eac t ive  diodes. Th i s  c i r c u -  

l a t ed  energy  undergoes l o s s  because it m u s t  p a s s  through one t r a n s -  

i s t o r ,  one diode, and two t r a n s f o r m e r s  i n  its roundtrip. Thus,  at 

higher input voltages,  at l e a s t  p a r t  of the t ime ,  l o s s e s  occur  in  the 

semiconductors  which do not r e su l t  i n  any energy being t r a n s f e r r e d  

t o  the load. 

of the indibidual t r a n s f o r m e r  voltages (because  the load is a vec to r  

s u m ,  and except for  the low voltage high c u r r e n t  operating point, the 

individual outputs a re  not in phase)  a l a r g e r  t r a n s f o r m e r  capabili ty 

than the load rating is r equ i r ed  with th i s  technique. 

t h i s  would not cause  as s e v e r e  a weight penalty as a t  lower f re-  

quencies.  ) The problem of wasted t r a n s f o r m e r  capabili ty can  be 

solved by generat ing a quasi-square wave d i r ec t ly  with the switching 

e l emen t s ,  r a t h e r  than with phase  shift techniques. This  does  r e q u i r e  

m o r e  complex control  c i r cu i t ry  and additional semiconductors  than 

the phase  shift technique. 
switches 

At higher input voltages,  where the c u r r e n t  

Also s ince the load voltage is l e s s  than the a lgeb ra i c  s u m  

(At 3200 cycles ,  

The extra  semiconductors  a re  used as 
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t o  s h o r t  the output t r a n s f o r m e r  p r i m a r y  during the pe r iods  when 

nei ther  power switching e lement  is on. Th i s  i s  cal led z e r o  c lamp-  

ing and avoids the type of waveform dis tor t ion shown in  F i g u r e  5K. 

3. T h e  unregulated a. c.. ( s q u a r e  wave) output of a switchirg s tage can  be 

operated on e i the r  by a switching device ( t o  produce quasi  - s q u a r e  

waves) ,  o r  by a non-linear resonant  circuit(for example,  a constant 

voltage t r ans fo rmer ) .  The l a t t e r ,  because the i r  operat ion r e q u i r e s  

driving p a r t  of t he i r  c o r e  into saturationlare less efficient than o r -  

d ina ry  t r a n s f o r m e r s  of the same VA rating. Also they tend topu l l  

spikes  of c u r r e n t  which r e q u i r e s  overdesign of the i n v e r t e r  power 

stage. Although they provide inherent  c u r r e n t  l imiting, the voltage 

regulation with load change is not adequate fo r  t hese  applications; 

thus,  the constant voltage t r a n s f o r m e r  was not felt  to  be sui ted for  

t h i s  application. 

Switching of the (a. c. ) output to  produce essent ia l ly  a quas i - squa re  

wave would r e q u i r e  a n  additional switch as shown in  F i g u r e  1 - 8 t o  

provide z e r o  clamping and avoid the unclamped waveform shown in  

F i g u r e  5K. 

In the absence  of feedback, the input voltage va r i a t ions  will  account f o r  the 

g rea t e s t  port ion of the output voltage var ia t ion and will  affect  all t h r e e  p h a s e s  

equally. 

the other two. 

The load var ia t ions on any one phase will  affect that phase  m o r e  than 
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The amount  of interaction, if any, will  depend o n  the des ign  of the inverter .  

It is advantageous t o  have the t h r e e  phases  tied together as much  a s  possible  

s ince with phase  shift techniques (which are indicated h e r e )  i t  is s i m p l e r  f r o m  

the con t ro l  point of view t o  v a r y  all t h r e e  phases  simultaneously than 

individually. 

Load shar ing techniques basically involve using p a r t  of the output of one phase 

to  make up the composite output of another phase. 

one output phase  will  r e s u l t  i n  s o m e  effective load being placed on a t  least 

p a r t  of the i n v e r t e r  s t ages  f o r  all phases.  One method fo r  doing t h i s  is to  

start with a two phase  inve r t e r  and t ransform the outputs with a Scott-Tee, 

yielding a t h r e e  phase output and two p r i m a r y  phases  which are general ly  

both loaded (though not equally) by a load on any one of the ( t h r e e )  secondaries .  

Another method is to  s t a r t  with a t h r e e  phase i n v e r t e r  and wind t h r e e  

secondar i e s  on e a c h  output t r a n s f o r m e r ;  these secondar i e s  b h i c h  may  be of 

different number of t u r n s )  a re  then e a c h  connected i n  series with o t h e r s  f r o m  

different p h a s e  output t r a n s f o r m e r s  t o  yield a composite output. 

on the r e l a t ive  number and phasing of the interconnected windings, different 

harmonics  m a y  a l s o  be cancelled out. 

s imp les t  t h r e e  phase inve r t e r ,  the switched output of which is s imply th ree  

s q u a r e  waves,  each 120' out of phase with r e spec t  t o  the o the r s ,  the addition 

of the output of any one phase and half the inverted s u m  of the o the r  two r e s u l t s  

in a composi te  wave which has no th i rd  harmonics.  

In th i s  fashion a load on 

Depending 

F o r  instance,  i n  t h e  c a s e  of the 

I 

8 
The individual generated 
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waveforms ( A ,  B, and C) along with the phase A composi te  output 

/? + 2 ( -8OC)appear  in  F i g u r e  1-9; a c i r cu i t  for  generat ing t h r e e  

phase waveforms of th i s  type is shown in  F i g u r e  10. 

Algebraically,  that  the resul tant  contains no th i rd  harmonic  can  be s e e n  as 

follows : 

Though providing cancellation of the l a r g e s t  and m o s t  t roublesome harmonic,  

t h i s  technique is again wasteful of t r a n s f o r m e r  capabili ty and weight because: 

1. The voltages added together i n  the secondar i e s  a r e  not all i n  phase,  

resul t ing in a smaller vector  s u m  then a lgeb ra i c  s u m  and hence 

wasteful of t r a n s f o r m e r s  in  the same fashion as the phase shift voltage 

regulation techniques a l r e a d y  d i scus  sed. 

2. Because the s u m  of the t h r e e  s q u a r e  wave voltages applied t o  the phase  

output t r a n s f o r m e r s  does not equal  ze ro ,  t hese  t h r e e  single phase  

t r a n s f o r m e r s  cannot be combined into a s i n g l e  th ree -phase  t r a n s f o r m e r ,  

( which would be smaller and l ighter  than the t h r e e  single phase  units. ) 
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A s c h e m e  which avoids these  objections (again a t  the expense of a more 

complex logic s y s t e m )  cons i s t s  of 3 320" quasi-square wave d r i v e s ,  spaced 

120'. 

monic t o  begin with. F u r t h e r m o r e ,  each t r ans fo rmer  now provides  J$g. 866 

of the fundamental  output of a t r a n s f o r m e r  operated at the same voltage with 

Each  individual power switch output i s  thus f r e e  f r o m  the th i rd  h a r -  

a s q u a r e  wave d r ive ,  but it only has  t o  support 213 2 .67 of the volt seconds 

as a t r a n s f o r m e r  with squa re  wavy drive.  Thus, i t  is m o r e  efficiently used. 

In addition, because the s u m  of the output voltages f r o m  th is  t h r e e  phase 

switching s y s t e m  equals  zero,  a t h r e e  phase output t r a n s f o r m e r  can be used. 

F i g u r e  1- 11 shows the output voltages of the t h r e e  phases  of such a unit; 

inspection will  show that  the s u m  of these  three vo l t ages  equals  zero.  The 

usual  objection to  the quasi-square wave switching stage,  its need f o r  extra 

switching e lements  t o  p e r f o r m  the z e r o  clamping function, does not apply h e r e  

i f  a t h r e e  phase  t r a n s f o r m e r  is used as the output t r a n s f o r m e r  because a 

glance a t  F i g u r e  1-11 will show that t h e r e  are always two and only two switches 

on at the same t ime ,  and they are  producing equal  and opposite voltages. Thus,  

the voltage i n  that winding which has  neither s ide ene rg ized  through a switch 

m u s t  be z e r o  in  o r d e r  t o  sat isfy the f lux relations r e q u i r e d  of the core .  
I 

, Notice 

that  i f  t h r e e  single-phase t r a n s f o r m e r s  were used instead, t h i s  re la t ionship 

would not need apply and s o m e  f o r m  of z e r o  clamping would be needed f o r  the 

switching s tages .  

TO obtain voltage regulation with r e spec t  to input voltage and balancedload 
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variations,  two waveforms produced by ei ther  of t hese  techniques o r  any other  

suitable one can  be added together with a voltage feedback controlled va r i ab le  

phase  shift between them. 

harmonic not p r e s e n t  i n  the individual waveforms and, depending on the 

spacing, may  contain reduced amounts  of other  harmonics .  

The resul t ing summation wave a l s o  contains no 

Th i s  method provides  voltage regulation to compensate  fo r  input voltage and  

balanced load variations.  

be compensated by th i s  scheme , 

only. 

of output voltage with unbalanced load can  be expected. Th i s  var ia t ion,  which 

is  expected to  be f a i r ly  small, could then be accounted f o r  by individual 

low power quas i - squa re  wave r egu la to r s  in s e r i e s  with each  phase output. 

The  var ia t ion due t o  any unbalanced loads cannot 

s ince it cannot v a r y  the output of one phase  

A fu r the r  analysis  of t h i s  c i r cu i t  will  indicate how much of a var ia t ion 

E a c h  quasi-square wave power stage would be controlled by a voltage feed- 

back circuit  sensing the output of the phase in which that quas i - squa re  wave 

source  was connected. 

wide range, the phase voltage would v a r y  a smaller but adequate percentage.  

Should the inve r t e r  outputs have too l a r g e  phase sh i f t s  f r o m  the 120° sepa ra t ion  

required,  the phase of each  individual quas i - squa re  wave with r e s p e c t  t o  the 

m a i n  switched output voltage could be v a r i e d  by a phase  feedback network, t o  

bring the ove ra l l  phase displacement  within specification. 

fo r  such a sys tem is shown i n  F i g u r e  1-12. 

By varying the width of the quas i - squa re  wave over  a 

The  block d i a g r a m  
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IV Conclusions -- 

A survey of i nve r t e r  configurations and switching dev ices  was undertaken and 

r ep resen ta t ive  inve r t e r  c i r c u i t s  analyzed. 

w a s  a s s u m e d  t o  be the m o s t  difficult, and an effort  was s t a r t e d  to  de te rmine  

a n  optimum configuration f o r  i t  by examining v a r i o  us i n v e r t e r  c i r c u i t s  i n  

light of the spec ia l  p roblems posed. It was felt that  t h e r e  w e r e  two bas i c  

design decis ions to be made. 

ing s t age  and power switching element.  

bining these  basic  e lements  t o  obtain a three phase,  voltage regulated sinu- 

soidal  output. Though nei ther  of t hese  has  been completed,  the first h a s  been 

investigated enough that the following rating c h a r t s  can  be made. On the bas i s  

of Table  1-1 which compares  switching d e m e n t s ,  i t  would appea r  that, depend- 

ing on the t e m p e r a t u r e s  the inve r t e r  would have to ope ra t e  in, and theamount  

of t h e r m a l  derat ing des i r ed ,  e i the r  the silicon o r  germanium t r a n s i s t o r  would 

be chosen as the switching element.  

The 3200 c p s  3 0  10 Kw i n v e r t e r  

One was the selection of the basic  power switch- 

The second is the technique of com-  

Because the s e r i e s  i nve r t e r  c i r cu i t s  a r e  load sensi t ive and a r e  a l s o  general ly  

used with SCR’s  as  opposed t o  the t r ans i s to r s  indicated above, they are  not 

feasible  as the fundamental  power switching s tage f o r  t h i s  inverter .  T h e  

br idge c i r cu i t s ,  with two semiconductors  in the forward  path of the d. c. 

input c u r r e n t  have twice the l o s s e s  and twice the number of semiconductors  

of the center- tapped p r i m a r y  type. Since the number  of weight and l o s s e s  

added by these  e x t r a  power switching elements will  be g r e a t e r  than the 
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savings a c c r u e d  through m o r e  efficient use of the output t r a n s f o r m e r s ,  the 

u s e  of any type of br idge c i r cu i t  is contraindicated.  Thus,  the power switching 

s tages  shal l  be of the p a r a l l e l  i nve r t e r  with cen te r  -tapped t r a n s f o r m e r  p r i m a r y  

type. 

The  various possible  methods of voltage regulation are shown in  Table  1-2  

along with the i r  advantages and disadvantages. 

nominal and a n  output of 115 volts. 

different input and output conditions, the des i r ab i l i t y  of the different techniques 

will  vary. 

technique of s a tu rab le  r e a c t o r  o r  SCR modulation of the output would ba 

extremely inefficient. Simil iar ly ,  at higher input voltages and wider  voltage 

variations,  the efficiency of the d. c. regulator  technique wo*:ld be competit ive 

with the o the r s ,  while i t  is not a t  28 v . )  

T h e s e  are  f o r  a n  output of 28 v 

( T h i s  is mentioned because under 

For example,  i f  the output voltage w e r e  only 6 volts,  the 

On the bas i s  of the m a t e r i a l  in th i s  Table ,  i t  a p p e a r s  that  the phase shift 

regulation is m o s t  advantageous for  the 3200/v10 Kw inve r t e r .  

high efficiency with a minimum of power semiconductors .  

It al lows 

134 



m 

U 
0 - d 

I I. 

135 



t 



1 137 



I 

138 



139 



140 



B 

141 

I I 1 
I I I 



A 

I 

L 

- T - - - - - - -  

t 

142 



BIBLIOGRAPHY 

1. Parallel I n v e r t e r  with Res i s t ance  Load, C. F. Wagner, A I. E. E. 
Transact ions,  v 54, November 1935, pp 1227-1235. 

2. Parallel Inver te r  with Inductive Load, C. F. Wagner, A. I. E. E. 
Transact ions,  v 55, September  1936, pp 970-980. 

3. Quar te r ly  P r o g r e s s  Repor t  No. 4 on Voltage Regulation and Power  
Stability i n  Unconventional Elec t r ica l  Genera tor  Systems.  
NOW 60-0824-C) June  30, 1961 (ASTIA #AD 265158) p 69. 

(Contract  

4. A High F requency  Power  Genera tor  Using SCR's  Neville Mapham, 
Solid State Design, April  1963, pp 35-38. 

5. Overcoming Turn-on Effects i n  Silicon Controlled Rect i f iers ,  Neville 
Mapham, Electronics ,  August 17, 1962, pp 50-51. 

6. Sil icon Controlled Rect i f ier  Manual, Genera l  E lec t r i c  Company, 
p 149-151. 

7. Silicon Controlled Rect i f ier  Designers '  Handbook, Westinghouse 
E l e c t r i c  Corporation, p 7- 100. 

8. Design Techniques f o r  Static Inverters ,  Sorensen  (Space Technology 
Labora tor ies ) ,  July 1959 (ASTIA #AD 227885). 

9. Quarterly P r o g r e s s  Repor t  # 4  on  Voltage Regulation and Power  
Stability i n  Unconventional Electr ical  Genera tor  Sys t ems  (ASTIA 
#AD 265158) p 87. 

10. Static Inver te r  with Neutralization of Harmonics ,  A. Kernick, J. Roof, 
and T. Heinrich,  A. I. E. E. Transactions,  May 1962, pp 59-08. 

1 E-2564 KASA-Langley, 1964 143 


